Skip to main content

Four crucial components of calf care

Submitted by lkeyser on Tue, 02/05/2019 - 10:52

Raising healthy heifers is a key component to making sure that future herds are high-production. Poor growth in young calves strongly impacts subsequent milk production. As such, even during a busy calving period, calves should not be forgotten. There are four crucial areas to look at when rearing healthy heifers:

  • Colostrum
  • Early nutrition
  • Rumen development
  • Environment

Colostrum

Colostrum is the first source of nutrients, vitamins and antibodies (immunoglobulins) the calf will ingest. The colostrum immunoglobulins protect the calf against pathogens and disease during the critical time when the young ruminant’s own immune system is evolving. The ability to absorb colostrum is at its highest in the first hour after birth, after which, it begins to decline and continues to do so through the calf’s first 24 hours.

A rule of thumb is to feed 10 percent of body weight (i.e., 3-4 litres) of good-quality colostrum within the first two hours, as a delay in the first feeding will reduce the absorption rate — and a failure to absorb enough immunoglobulins from colostrum leaves a calf susceptible to disease. A second feed should be given eight hours later, before transitioning to milk or calf milk replacer.

Early nutrition

Early nutrition is important for the pre-ruminant calf to successfully transform into a ruminating, high-producing cow, as well as for providing the calf with the energy and nutrients its immune system needs in order to develop.

The golden rule is to double birth weight before weaning (at 8-10 weeks), and this is best done during the few months when feed efficiency is at its greatest. Therefore, a 40-kilogram calf should gain 0.6 kilograms per day. To achieve this, aim to feed 15 percent of body weight (i.e., 6 litres for a 40-kilogram animal). Keep in mind that, at this stage, the calf abomasum is not large enough to deal with 6 litres of milk at once.

Calves require around 325 grams of milk solids for maintenance. Milk powder contains 12.5 percent DM, which translates to 2.6 litres. Calves weighing 40 kilograms being fed four litres per day (i.e., 10 percent of their body weight) can achieve 200 grams of growth per day. However, calves weighing more than 40 kilograms will struggle to maintain on this level. Milk replacer has a lower fat and energy content than whole milk, and as such, a higher rate is necessary.

When mixing milk powder, always remember that 125 grams of milk powder makes up to one litre — not 125 grams added to one litre of water. Milk replacer should match growth targets.

Rumen development

The rumen needs to be fully functioning to successfully perform later in life. The development of the rumen is aided by the starch content in concentrate feeds, which should be made available within 2–3 weeks of birth.

To strengthen the rumen wall, calves should have access to straw. However, avoid feeding a diet with a high hay content; there is a greater risk of overeating hay, which can lead to pot belly — that is, filling the rumen with hay that cannot be properly digested. This can lower concentrate intake.

Environment

After birth, a calf should be dried off as quickly as possible and placed in a clean, dry, draught-free environment. Alternative bedding, such as wood chip and peat, is adequate but may need to be topped up regularly to ensure it stays consistently dry.

Cleaning all feeding equipment is necessary for maintaining healthy animals, and prioritizing younger animals first, along with rinsing before feeding the other batches, will help mitigate the spread of disease. Clean, fresh water should always be available, as consumed milk goes into the abomasum, leaving no liquid in the rumen to digest the concentrates.

Changes within groups should be kept to a minimum, and calves of similar sizes or ages should be kept together.

Conclusion

Along with good management practices, you can build a healthy herd with a strong rumen and robust immunity by focusing on:

  • Colostrum — quality and quantity are both important, and there is only one chance to get it right.
  • Early nutrition — monitor body condition and weight gain during this period to ensure that feed is meeting the calves’ needs.
  • Rumen development — use starch and fiber to grow a healthy rumen.
  • Environment — keep their living quarters clean, dry and stress-free.
 

I want more information on nutrition for my calves.

<>Premium Content
Off
<>Featured Image
<>Date
<>Featured Image License
Off
<>Hubspot
<!--[if lte IE 8]>
<script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2-legacy.js"></script>
<![endif]--><script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2.js"></script><script>
hbspt.forms.create({
portalId: '745395',
formId: '2c5ba201-30c0-4669-9dc4-c9711ca1b006'
});
</script>
<>Feature
Off
<>Primary Focus Area
<>Animal Nutrition Focus Areas
<>Article Type
<>Challenges
<>Regions
<>Programs and Services
<>Content Author

Scaletti and Murphy: Less is more with organic trace minerals

Submitted by ldozier on Sun, 09/16/2018 - 16:58

The following is an edited transcript of Tom Martin's interview with Dr. Richard Murphy and Dr. Roger Scaletti. Click below to hear the complete audio:

 

Tom:            Why are we still using inorganic minerals? Why do nutritionists continue to overfeed nutrients and waste money? How can a mineral management program improve the health of the herd? Here to discuss these questions, among others, about the role of minerals in animal nutrition are Dr. Richard Murphy, research director at the Alltech European Bioscience Center in Dunboyne, Ireland, and Dr. Roger Scaletti, who focuses on the technical sales and support of the Alltech® Mineral Management program. Thank you both for being with us.

 

                    There may be some confusion and contention around the issue of organic versus inorganic minerals and the effectiveness of one over the other. First, Dr. Murphy, a brief primer, if you would, on the difference between organic versus inorganic?

 

Richard:        That's a great way to start this conversation. I guess it's going to be a fun conversation over the next while! Effectively, when we talk about organic minerals, all we've done is taken the mineral source, we've reacted it with an amino acid or a peptide or some other organic bonding group, and we basically make that mineral protected. Rather than thinking about an inorganic mineral as just being straight mineral, with the organic mineral, we've protected the mineral, and that protection offers us a lot of benefits. Particularly in the intestinal tract, it offers us stability — changing the pH that we would see in the gastrointestinal tract.

 

                    For instance, at the start of the intestinal tract, the pH is neutral. When it gets into the gastric environment — or the stomach — it becomes very acidic. Those changes in pH can impact amino acid. With the organic mineral, what we're doing is we're bonding it to either an amino acid or a peptide or some other organic molecule, and that protects us as it moves through the GI tract and makes it much more stable.

 

Tom:            Dr. Scaletti, just to be clear, is the use of organic versus inorganic specific to the production method? In other words, are organic minerals only for organic farms?

 

Roger:          Another great question. No, organic minerals would be beneficial for any farm. In a typical presentation, I would start off by saying when I mention organic minerals — I'm not talking about not using pesticides or herbicides — I'm talking about the chemistry of carbon, just like Dr. Murphy mentioned. Remember, there is no real requirement for inorganic trace minerals.  Animals need zinc, copper, manganese, selenium, etc. every day, but the source of that trace mineral is not dictated, so organic minerals are suitable for all different production systems.

 

Tom:            Okay, for either of you, has research proven that an organic mineral is more bioavailable and usable by the animal?

 

Richard:        Absolutely. I think Roger would agree. We've got an absolute wealth of information that we've built up over the last 20 years or so showing that the organic minerals are a far superior source of mineral to use in all diets.

 

Roger:          Yes, like Dr. Murphy mentioned, the bioavailability part, I think, is what gets people's attention initially. But then, at the end of the day, the farmer, no matter what species, is looking for a production response. So, we also have research covering production responses that you would see as you change your mineral supplementation from inorganic to organic.

 

Tom:            What is it about organic minerals that makes them more beneficial?

 

Richard:        For me — my background is in biochemistry — it's trying to understand how minerals interact, not just in terms of how the animal responds to it, but how those minerals would interact with feed and materials, for instance. Certainly, with the organic minerals, you have benefits beyond just health and just performance in that we change the way in which we can impact or influence the nutrients in the diet.

 

                    With the organic minerals, we know it will have less of an impact on vitamin stability, less of an impact on antioxidant function. Even with some of the enzymes that are part of the gastrointestinal and digestion process — they won't be as impacted by organic minerals as they would by inorganics.

 

Roger:          Then, to follow a little bit with Dr. Murphy's comment, some of the, for example, enzyme interaction work that we've done in vitro has been done in dairy cows as well, showing that, when you're only supplementing with organic minerals — in our case, Bioplex® and Sel-Plex® — you have a more effective rumen fermentation. So, you're producing more total volatile fatty acids and more butyrate, which is kind of the business of the rumen: to produce those volatile fatty acids. Whether it's a case of the organic minerals enhancing that or leading to accelerated rumen organism replication, it's one possible pathway, but I think another possible pathway would be that you're removing rumen microorganism inhabitation when you take out the inorganic minerals.

 

Tom:            Which trace minerals are key to improving livestock performance? Is there a shortlist?

 

Roger:          The shortlist would be zinc, manganese, copper, cobalt and selenium. Depending on where you are in the world, or even within a given country, one of those may be more important than another one. In North America, our most important mineral for supplementation and consideration would be selenium, just based on the background selenium in soil, which is going to dictate the selenium in forages and grains. Those five would be the main ones. On the monogastric animal, we would add iron to that. We have six minerals we'd be talking about.

 

Tom:            We may have touched on this a little bit before, but what is known about the utilization of the minerals by the animal — or animals, I should say?

 

Richard:        Well, minerals themselves are used in many different ways. Predominantly, when you look at their role in cellular systems, they're essential co-factors for many different enzymes, for instance. You won't get cellular processes working optimally or working efficiently if you don't have the necessary mineral required for the enzyme to carry out its function, or for the enzyme that's necessary for those biological functions.

 

                    They're wide-ranging. If you look at copper, for instance, it's involved in many different enzymes that are involved in the antioxidant response. Selenium is a particularly important one in terms of its ability to modulate, not just in antioxidant response, but in many other enzymes that are involved in many other processes as well. So, really, they're essential and critical for the most basic of cellular functions.

 

Tom:            Are there differences in animal chemistry species to species, or even within species, that cause mineral forms to perform differently?

 

Roger:          My answer — and this would be more in Richard’s wheelhouse — but just in a ruminant, we have to deal with the rumen, the rumen environment, the rumen microorganisms. In other species, you wouldn't have the rumen part. In equine or in horses, they would have a hindgut fermentation. There’s a difference in terms of how each animal is set up, but for the most part, you're seeing the similar benefits from organic minerals across the species.

 

Richard:        There is one common factor across all species — we touched on this at the start — which is that change in pH along the length of the GI tract. That's one of the most critical parameters that is involved in defining how good or how poor a mineral source is. If that mineral source is enabled to withstand those constant changes in pH, you won't get it to the sites of absorption in the intestine. You really need to look at having a stable mineral molecule. Obviously, organic minerals are the most stable of those. But even within the different types of organic mineral products that are out there, you'll see distinct differences in terms of the stabilities of individual products, and that will have an impact on how individual products will function in the animal.

 

Tom:            Why do organic trace minerals mean less inclusion, less waste and better meat quality?

 

Roger:          Well, to me the starting point would be that you don't need as much mineral to get the job done. Corollary to that, you're getting a more effective job done with organic minerals. I think, over the years, in the industry side of things, it's kind of been a race to the top. One company was using however many PPM [parts per million] — or milligrams — of a mineral, and the next company would add a little more to it, operating under the old adage of more is better.

 

                    Well, that's really not the case. We found, and have the research to show, that you're getting a more effective response with less mineral use, probably through a lot of the pathways Dr. Murphy mentioned, but it's not always an apples-to- apples comparison. Zinc oxide, at a given parts-per-million, is not going to perform the same as a zinc proteinate, or Bioplex zinc, at a much lower concentration inclusion in the diet.

 

Richard:        It's actually of interest on the regulatory side — and I think Dr. Scaletti would probably agree with this as well — when you look at changes in legislation over the last number of years, in particular in the EU, there have been changes in the maximum permissible limits that are allowed in feed. I think the zinc — this is just back to Roger's mention of zinc oxide there — I think the zinc area is one in which we can demonstrate that quite nicely. There's a lot of talk in the EU about how they're going to ban zinc oxide use as a prophylactic and prevent scouring in piglets and calves, for instance.

 

                    One of the reasons for that that they've quoted is that the regulators are concerned about the impact that zinc oxide can have on co-selection for antimicrobial resistance. But when you look at the permissible limits that they have of zinc in feed, they make reference to the use of phytase, for instance, as being a way to perhaps enhance the effectiveness of the zinc source that's added to the diet or enhance the background level of zinc that's in the feed.

 

                    All in all, I think there's a move by the regulators. Now, the regulators, if they want to change those limits again, will have to come back and revisit the delineation between inorganic and organic minerals and the differences in terms of the bioavailabilities of those. I think, in the future, we may even see regulators like the EU body — which would be the EFSA (the European Food Safety Authority) — would say, “Okay, we'll need to examine this in more detail.”

 

                    Certainly, the Brazilian authorities have already done that. They've made a clear delineation between the availability of inorganic and organic mineral sources. The more recent documents that have been published by authorities in Brazil basically delineate clearly between what levels of inorganic you should feed in a diet and what levels of organic you should feed in the diet, and they're distinctly different.

 

Tom:            As you have observed improvements in performance, are there any lessons? Any takeaways from that experience that have informed what you do going forward?

 

Roger:          I would say: more isn't better. I think a lot of people are accustomed to looking at a tag or a ration report, and they're looking for a certain number or level of mineral supplementation. That's only so useful if you, then, don't read the ingredient list and see, is it coming from oxide, sulfate, organic proteinate — whatever the case may be. I think the source of mineral is more important than the amount. So again, it's about making sure it's an apples-to-apples comparison, and less doesn't mean less performance. I think a lot of times, at least in the United States, our industry would be looking for high levels of supplementation, and they equate high level with being good or what is essential, and that's not really the case.

 

Richard:        Just to add to that as well, Dr. Scaletti, I think it's important that the industry really looks at organic minerals and says they're not all the same. There is a misconception, I think, within the industry. You have all these different brand names and different types of organic mineral products. I guess the natural inclination is to say, “Well, it's an organic mineral. One product must be the same as the other.” There are very distinct differences between them.

 

                    Again, this is back to that concept of how that mineral source interacts or how stable it is as it moves through the GI tract. Certainly, in some of the work that we've seen from the team at our European Biocenter in Ireland, we've basically shown there are very distinct differences in terms of the stabilities of different organic trace mineral products, and that can have distinct impacts, not just on the bioavailability, but also in which [of] those different products would interact with different premix and different feed components.

 

Tom:            There are some misperceptions out there about minerals. What beliefs are most prominent and how do you address them?

 

Richard:        I think the biggest misconception is with regard to size. That's probably the biggest industry misconception that's there, and that's a historical one. Originally, when organic minerals first became available, they were simply complexes between amino acids, like methionine or lysine, with copper and with zinc. Certainly, people thought, “Well, if you have a small bonding group, then absorption of it is much better or delivery of it is much easier.” That's not the case. What we've seen is that it's the type of bonding group that's used — so, the type of amino acid. But, particularly when you get into peptide-based technologies like we see in Bioplex, it's the actual amino acid sequence in those peptides. So, it's even more fundamental than we would have thought in the past. The configuration and the type of amino acids present in the peptide would very significantly influence the stability.

 

                    I think the biggest misconception in the industry about organic trace minerals is that size is important. I can absolutely say with certainty size is not an issue. It's the type of bonding group that's used. And more importantly, when you look at peptides, it's the configuration and the sequence of amino acids that are in the peptide that are of more importance.

 

Roger:          I would just maybe follow up with that in regard to organic selenium. The battle is typically, “What is the content of selenomethionine in a selenium yeast product?” Dr. Murphy would have research showing it's not only an effect of how much selenomethionine you have present; it's how much of that can be digested and released. So, again, just coming back to that concept of “more isn't always better,” especially if what you're supplementing isn't released — or isn't available — to the animal.

 

Richard:        Yeah, that's actually a great point, Dr. Scaletti, just on the organic selenium side. Certainly, in the EU, we've seen newer forms of, again, so-called organic selenium sources being produced and available for sale, and these are actually chemically synthesized selenomethionine and selenomethionine derivatives that are distinctly different and have a distinctly different offering than you would see with selenium yeast products, such as Sel-Plex, for instance.

 

                    Again, it's back to the concept of stability. Free selenomethionine molecule is not necessarily the most stable one when you look at again the influences of those processes in the GI tract. So, certainly, even within organic selenium sources, [it’s a] much, much different proposition now with the availability of these newer chemically synthesized molecules.

 

Tom:            Livestock in many parts of the world have been overfed inorganic forms of trace minerals, such as copper, manganese and zinc, to offset their inefficient digestibility. The excess ends up in manure, and levels of these trace minerals have gotten so high that it's actually illegal to spread that manure out in the fields to support growth forages or grain. So, what happens to all of that excess manure? We're stuck with it?

 

Richard:        Well, I guess if we can't spread it, we've got to do something with it, and it looks like we could be. I know from some of the newer technologies that are coming out — some great startup companies that are basically looking at detoxifying heavy metal in soils using microbial-based solutions. So, perhaps, this is one way in which we can look at remediating those heavily contaminated lagoons, if you like.

 

                    Other options may be stripping-based technologies. These are basically looking at removing minerals, and this will be costly, Tom, I would have to say, removing mineral with EDTA-based chelation. But, certainly, something has to be done, and I think organic minerals are, without a doubt, one of the solutions to the problem. You can look at adding less mineral, having less runoff and then, obviously, less contamination in those lagoons. Certainly, the drive toward reducing environmental contamination will definitely be driven and solved, without a doubt, by the increased use of organic minerals over the next couple of years.

 

Tom:            In some places, regulation is beginning to force the issue. A number of countries around the world have already passed legislation restricting the use of trace minerals because this overfortification has led to pollution. Do you see this type of legal action as a continuing trend?

 

Richard:        I guess it goes back to the comment I made earlier about the regulations around zinc and zinc usage in feed, but also, then, the impending ban in the EU on zinc oxide as a prophylactic. I think the regulators will take a greater look at the issue, and I think they will certainly have to start making decisions on whether they promote organic minerals as a way in which we can reduce this or not. It's not the job of a regulator to promote a brand of products, but certainly, I think, when you look at the proposition that organic minerals give in terms of being a solution to the problem, they'll have to start promoting the use of organic minerals as a way in which you can add less, not impacting performance, and have much less of an environmental impact.

 

Roger:          I would just say that I think the path forward is just going to depend [on] where you are in the world. I don't know that the United States is looking at any of these zinc, manganese or copper regulations any time soon. Our only regulations in terms of trace minerals would be selenium and the mineral we haven't talked about today: iodine. If you're using iodine in the EDDI (ethylenediamine dihydroiodide) form, there are limits on how much you're allowed to feed. Other than that, selenium would be our only regulated mineral, and today, we could go out and supplement as much zinc as we want in any animal in the United States without a problem.

 

Tom:            Are you seeing growth in the organic minerals market?

 

Roger:          We're seeing tremendous growth, both globally and regionally. In North America, I think, as people realize, again, that it's not an apples-to-apples comparison or you're not just looking at a level of mineral — that you need to pay attention to the form — that people are realizing that organic minerals have an important role. I also think we're getting a little bit closer on the cost difference; inorganic minerals are still cheaper, but their price keeps going up. I don't know that cost is as prohibitive as it used to be, from a practical farm level.

 

                    That's probably the only reason people aren't using organic minerals as their only source. It's a cost thing. Now, when you start looking at the response and, then, the return over investment opportunity, well, it's not a cost: it's a profit-maker. So, I think it's just a slow change.

 

                    When you look at trace minerals, for 60-70 years, we used inorganic minerals; for the past 20, we've used organic. So, it's still pretty new in terms of what's going on in the general supplementation industry. When you look at some of the different documents out there — for example, National Research Council or NRC Guidelines — they really don't get into a discussion on form. As Dr. Murphy mentioned, the Brazilian government recognizes that there are form differences, and some other countries around the world are starting to do so as well. I still think it’s left to feed companies, nutritionists and, ultimately, the farmer or end user to make a decision of, “Do I want to make an investment? If so, how much?” That's kind of where the decision is today.

 

Tom:            As you continue working toward better performance in animals, are you exploring new ideas for delivering nutrition more efficiently? Is that just an ongoing process?

 

Richard:        Yeah, it's an ongoing evolution. I think we've moved, over the last number of years, more toward, rather than thinking about nutrition as just being an individual component, we've really focused on the benefits of multicomponent packs. Certainly, there are a lot of different synergies you can get from different products present in a pack and the many ways you can get, I guess, good synergism between those components. Certainly, with some of the Blueprint® products that we have in Alltech, we've seen tremendous increases in health or performance and, again, these are multicomponent impacts. Rather than thinking about nutrition as being individual components added together, we tend to think about the synergism that we can get from multiple components out of them. That's something that we'll focus on more and more over the next couple of years.

 

Tom:            This has been really enjoyable. I have one final question: what new developments in minerals or mineral feeding strategies do you think we might see within the next five years or so?

 

Roger:          I don't know if I see a new development as much as just people embracing organic minerals more than they currently do. I'd say, currently, most of the industry would be at some sort of a partial supplementation, where the bulk of the mineral that's being supplemented is inorganic sulfate or oxide, and then they try to come up with how much organic to put in. They want to get all the benefits of organic, but they don't want all the price.

 

                    I see more of the bigger advancement being, as people just progress through that decision in their head, from partial replacement to more of the full replacement or total replacement, and realizing that organic minerals are what's doing the heavy lifting – that there really isn't a big need for those inorganic minerals that, for maybe just historical purposes, they just can't seem to kick out of the ration.

 

Tom:            Do you see something in the near future, Dr. Murphy?

 

Richard:        I'd agree with Dr. Scaletti in that. We’re going to see increased awareness in the benefits of organic minerals and how you can use less of those organic minerals and not have a negative impact on health and performance. That, obviously, is going to feed into an environmental benefit. I think we'll also see changes, perhaps, in the way in which we apply these minerals. I think people are looking more and more toward technology as a driver of agriculture.

 

                    I think we'll see differences in the next few years in the way in which feed delivery is made, in the way in which you can actually begin to look at delivering feed on farms. I do think we'll see more and more digital-based technologies that will influence feeding strategies, and then, it will obviously influence how we formally feed.

 

Tom:            Dr. Richard Murphy, research director at the Alltech European Bioscience Center in Dunboyne, Ireland, and Dr. Roger Scaletti, who focuses on the technical sales and support of the Alltech Mineral Management program. Thank you both for joining us.

 

Richard:        Thank you very much.

 

Roger:          Thank you.  

 

 

Drs. Scaletti and Murphy presented their insights during ONE: The Alltech Ideas Conference (ONE18). Don't miss the chance to hear the latest in animal health and nutrition at ONE19. Click here to learn more. 

 

ONE19 logo LockUp.png

<>Premium Content
Off
<>Featured Image
<>Date
<>Featured Image License
Off
<>Feature
Off
<>Primary Focus Area
<>Article Type
<>Products
<>Image Caption

Incorrect mineral supplementation can have major consequences on animal health and productivity. Organic trace minerals are proven to support better absorption, less waste and optimum health.

First KEENAN machine in Northern India

Submitted by lkeyser on Fri, 08/03/2018 - 10:12

The KEENAN “Green Machine” has made its way from Ireland to Northern India, with Gurpreet Singh Grewal being the first KEENAN machine owner in the area. Gurpreet has worked in the dairy business for the past eight years and is currently milking 105 Holstein dairy cows on his farm.

Gurpreet is the owner of HG Grewal Dairy farm in Chimna village, Jagroan Tehsil, in the state of Punjab — an area with a continuously growing dairy sector.

Jagroan Tehsil is one of the leading milk belts of Punjab and is home to most of the Progressive Dairy Farmers Association’s active farmers in the state. Milk is the main product from livestock in Punjab, accounting for nearly 80 percent of the total value of livestock output.

Punjab is considered one of the most progressive states for the dairy industry in India. Dairy farmers in this area are adopting the latest techniques and technology rapidly, and Gurpreet is among those early adopters. He bought a KEENAN ECO50 in December 2017 after attending an Alltech event, completing research and receiving recommendations from his brother. This is the first time Gurpreet has used a Total Mixed Ration (TMR) wagon.

keenan india 2.jpg

The KEENAN machine in action at HG Grewal Dairy farm.

“I am very much satisfied with the KEENAN machine performance and its contribution to the overall profitability of the farm, as well as with Alltech solutions and technical support,” said Gurpreet. “I highly appreciate Alltech’s technical help in TMR formulations and Alltech In Vitro Fermentation Model (IFM) lab facilities for testing silage samples.”

Gurpreet is particularly pleased with:

  • Gentle mixing of TMR — the cows do not separate the feed, so there is less feed waste
  • Uniform mixing of TMR, which leads to no sign of Acidosis
  • Uniform Body Conditioning Score
  • Good processing and mixing of rye grass, which maintains the structure of the fodder
  • Increase in milk production

Soon after Gurpreet started using the KEENAN machine, his farm attained peak milk production of 1,660 litres from 56 dairy cows, from December 2017 to January 2018. This was even without changing the TMR formulation.

HG Grewal Dairy farm currently uses the following Alltech products: Yea-Sacc®, Optigen® and Mycosorb A+®.

Please contact india@alltech.com with an questions.

 

I want to learn more about nutrition for my dairy herd.

<>Premium Content
Off
<>Featured Image
<>Date
<>Featured Image License
Off
<>Hubspot
<!--[if lte IE 8]>
<script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2-legacy.js"></script>
<![endif]--><script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2.js"></script><script>
hbspt.forms.create({
portalId: '745395',
formId: '2c5ba201-30c0-4669-9dc4-c9711ca1b006'
});
</script>
<>Feature
On
<>Primary Focus Area
<>Animal Nutrition Focus Areas
<>Article Type
<>Regions
<>Programs and Services
<>Image Caption

Gurpreet Singh Grewal stands proudly as the first KEENAN machine owner in Northern India.

<>Content Author

Bridging the data gap in dairy farming: The promise of digital technologies

Submitted by lkeyser on Tue, 07/24/2018 - 10:25

By 2067, the per capita consumption of dairy is expected to increase from 87 kilograms (kg)/person to 119 kg (projections). Compounded by a growing population, the dairy industry will need to produce 600 billion kilograms more milk. This means today’s dairy cow will either need to double her production, or we will need to dramatically increase cow numbers! Over the last 25 years, we have increased milk production by 61 percent (about 2 percent per annum) — but can we continue to grow sustainably?

The difference between a high and low performing cow can be considerable. Milk production —  judged by weight — is influenced by genetics and nutrition, but also by inconsistency in mixing of feed, eating behaviors (such as sifting), other cows’ bullying, water quality (or lack thereof!) and environmental factors, such as heat. In ever larger and more intensive production environments, with fewer people wanting to work on farms, management is emerging as an even more significant challenge. In such a setting, dairy farming has focused on managing the average cow, not the individual.

A glaring gap for dairy farmers is data. Farms, especially large ones, don’t know how much an individual cow eats, how much she drinks, how much she moves, her body temperature, stress levels, sickness, etc. Even individual milk production isn’t always recorded in a consistent manner.

How can farmers manage cow comfort, select the best animals for breeding and retaining, judge true profitability, meet prosumer demands for animal welfare and sustainability and raise the bar in terms of milk production? Without precise, real-time, smart data, the task of managing individual cows is nearly impossible. But emerging digital technologies could fill that data gap.

Sensors

More than any other technological advancement, sensors can fill the data gap in dairy farming, particularly when animals are outside in a field. Before the use of technology, monitoring an individual cow’s health was difficult, time consuming and cost-intensive. However, the use of sensors and wearable technologies allows farmers to monitor individual cows. No longer do producers have to work from herd averages; they are now able to determine individual illness or lameness more effectively and react accordingly, quite possibly before milk production or the rest of the herd is affected.

Wearable sensors have proven valuable in managing a cow’s health, and there is no shortage of companies producing this type of technology. Leaders — such as SCR Dairy, which is assessed to have about 80 percent of the market share — produce all manner of wearables worn on a cow’s ears, neck, legs or tail. They can even be implanted subcutaneously or inside the rumen.

Sensors help monitor cow comfort and welfare. Cows need to rest for an average of 11 hours per day; any less than that affects blood flow to the udder and can negatively impact milk yield. Sensors can detect a lack of locomotion and alert producers when to circumvent these negative effects.

Sensors can be used to detect disease signals that are otherwise hard for farmers to notice, such as mastitis. AfiMilk, Agricam, Fullwood, DeLaval, Lely, LIC Automation, MastiLine and Wakaito all claim to detect mastitis in cows and provide producers with early opportunities to combat the issue.

Rumination is also vital to a cow’s production, and sensors designed to be located inside the rumen can monitor acidity levels through a digitally connected bolus. Companies that offer acid monitors — like Smartbow, which was a participant in the Pearse Lyons Accelerator — allow farmers to detect digestive problems, such as ruminal acidosis. 

Livestock Labs has created a tracking technology called EmbediVet, which is implanted underneath the cow’s skin using a local anesthetic. This tracker claims to be less bothersome than wearable sensors and more accurate in gathering data and monitoring behavior.Ingenera offers a line of various sensor products designed to measure cow conformation, weight, udder health and other body metrics.

Moocall, also a participant in the Pearse Lyons Accelerator, produces sensors that detect the heat cycle of the cow by evaluating her responsiveness to a teaser bull. His proximity and behavior can determine her receptivity and alert the farmer's smart device if she is in heat. Afimilk makes a pedometer for cows, alerting farmers of the best time for insemination on the basis that cows walk and move more as they come into estrus.

moocall_sensor.png

Image courtesy of MooCall

Moocall also makes the Moocall Calving sensor, a wearable that attaches to the cow’s tail and monitors her contractions. Connected to the producer’s mobile phone, it sends an alert one hour before active calving, allowing farmers to minimize time spent checking pregnant cows and increase efficiency in time management.

Outside of wearables on cows, there are other examples of sensors in the dairy industry. The startup SomaDetect has developed a sensor that enables farmers to know what is in the milk they produce. Specifically, there is an in-line sensor that measures milk fat, protein, somatic cell counts, progesterone and antibiotic residues (not allowed for human consumption) at every milking. Danish company Foss Analytics has a similar business model, using sensors and NIR.

ENGS systems is implementing their free-flow technology through the Advanced Milk Meter. It collects data on the cow’s individual milk flow rate, quantity, temperature and electrical conductivity and transfers the data to a milk management program for farmers to use.

Artificial intelligence

Big data promises precision agriculture; however, if farmers can’t interpret the data and use it to take action, the data is useless. Artificial intelligence allows producers to analyze the data collected by sensors and other hardware technologies and can provide interpretations and solutions by mimicking human decision-making — potentially transforming how a dairy farm operates.

SCR Dairy is implementing cow, milk and herd intelligence through their sensors and artificial intelligence technologies. They offer sensors ranging from heat detection and calving to health monitoring sensors — including the SenseTime Solution sensor, which detects and charts a cow’s daily activities, such as ruminating, eating and walking patterns. When paired with artificial intelligence software, this sensor provides users with early, proactive solutions to problems. Along with the capability to record information about reproduction, health and nutrition, the sensor also provides farmers with solutions for each individual cow. 

Cainthus_AI.jpg

Image courtesy of Cainthus

Cainthus has developed algorithms for facial recognition software that can monitor a cow’s activity. There is no need for the cows to wear any sort of tracking device, and this software may eliminate the need for wearables all together, particularly for animals raised indoors. Using cameras stationed throughout the barn, the software alerts farmers when their cows show early signs of lameness. Cargill has a significant minority investment in Cainthus, capitalizing on the notion that this “machine vision” approach will allow AI to supplant many of the sensor systems. 

Developed by Connecterra, Ida, “The Intelligent Dairy Farmer’s Assistant,” is a cow neck tag that gathers activity data on cows, such as time spent eating, ruminating, idling, walking and lying down. Connecterra says it uses AI to interpret individual deviations in the cow’s behavior and provide alerts or recommendations to the farmer.

Drones

There are opportunities for drones in the dairy industry, but they often require additional technologies. Drones can be used to generally inspect the herd or fences or to aid in herding cows from fields to barns.

The inclusion of other technologies presents greater opportunities. Visual sensors have proven to be instrumental in surveying land and measuring pasture growth. PrecisionHawk is using drones to map, inspect and photograph pastures in order to detect growth. 

Algorithms enable drones to identify cows specifically and avoid confusing them with deer or similar animals. When combined with thermal imaging, the opportunities to locate and track cows increases dramatically, particularly in fields spotted with trees or dense foliage. Temperature detection would allow farmers to identify abnormal behavior in the cow, such as lameness, illness or calving. Drones may become more useful in these areas, particularly if battery life is prolonged and autonomous flying ability is improved.

Robots

Robotic milking machines are probably the most well-known application for robots in the dairy industry, increasing efficiencies and replacing expensive or unavailable labor. Lely’s Astronaut A5 and DeLaval’s Voluntary Milking System not only cut labor costs, they also allow cows to decide when they want to be milked. Robotic milkers (milkbots) clean the udders, identify the cow’s teats and milk automatically.

DeLaval offers other robotic milking technologies, such as the rotary platform, which allows farmers to maximize a herd’s milking performance while providing a comfortable and safe environment for both cows and operators. miRobot provides a milking system also designed for larger operations. Both companies offer multi-stall, automated milking operations to milk cows simultaneously, completing full parlors with only one operator. This new technology has allowed farmers to cut back on labor costs and achieve more milkings per day.

robotic_milker.jpg

Image courtesy of Lely

The Lely Grazeway system acts as a gateway to the pasture that only allows cows to graze after they have been milked. The cows step into the selection box, and the Lely Qwes cow-recognition system determines whether or not the cow can be let out to graze.

Before robots, cows were typically milked twice a day because of labor and time constraints. Now, cows can be milked three times a day or more, greatly increasing production and profits. In addition, while the cows are stationary for several minutes during milking, there is also an opportunity for medical and health assessments using transponders or sensors — which can not only analyze the speed, amount and quality of milk produced but also how much the cow has eaten, its heat cycle and more.

Another possible use for robots includes cleaning and sanitizing the barn, allowing for better biosecurity measures that will lead to healthier conditions for the cows. There might also be a place for robots in the calving process. While this might not be as useful for an outdoor herd, there is the potential for robotic assistance for cows kept indoors.

3D printing

There are multitudinous applications for 3D printing in the dairy industry. A primary application of 3D printing is for machine parts, which may be of particular interest to rural farmers, saving valuable time and even possibly money, depending on the part needed.

3d_printing.jpg

Image courtesy of Perfect Day

In some ways, 3D printing is already challenging the dairy industry, through 3D-printed foods. Cheese is one of the easier foods to duplicate through 3D printing, due to its easily changeable state from solid to liquid. Studies suggest that printed cheese is less sticky, softer and has better meltability than non-printed cheese. The concept of printed food may not appeal to all consumers, though, so the challenge is to produce food that offers an advantage, such as lower cost, improved taste or better nutritional content.

Such is the case with “Perfect Day,” a startup company from San Francisco using 3D printing combined with gene sequencing to create a yeast fermentation product that looks and tastes like milk. The product is portrayed as a non-dairy alternative for vegans or dairy-intolerant individuals. 

Augmented reality

Augmented reality (AR) can be defined as the integration of digital information with the user’s environment in real time. A recent report stated that sales for augmented reality are expected to rise from $2.4 billion in 2018 to $48.2 billion in 2025.

Studies have found that AR can be used to make food more visually appealing or to effectively estimate proper serving sizes. Apple’s ARKit can also be used to provide consumers with nutritional knowledge, as this video demonstrates. Should this technology become more common, these applications could affect the dairy industry, as certain aspects of food products — both good and bad — would be more readily available to the consumer. 

Outside of the consumer focus, augmented reality can be used to allow producers an alternative way to monitor and evaluate cows. This video (skip to the 2:22 mark) demonstrates how AR can allow a farmer to immediately see stats relating to the farm through the use of goggles. Information relating to each individual cow is overlaid through the glasses into the farmer’s field of vision. He can see information on everything in the facility and even evaluate the quality of the milk.

Could this technology not also be used in the veterinary field for inspection and observation? Perhaps if combined with reliable sensor data, the vet could be able to deliver appropriate recommendations for disease management and reduce the need for direct farm call visits, thus lowering costs.

Virtual reality

Virtual reality (VR) is defined as a digital environment that can be interacted with in a seemingly real way through electronic equipment. Applications in the dairy industry vary from farm tours to veterinary training, with positive impacts on safety and efficiency. 

New Zealand dairy cooperative Fonterra and solutions company Beca have partnered to develop a virtual reality health and safety training technology that allows employees to navigate the manufacturing and distribution sites without actually setting foot on the physical site, thus reducing onboarding times. Fonterra employees learn to identify potential hazards and experience hazardous situations in a realistic simulated environment, enhancing learning experiences without the risk of being in harm’s way. This technology also reduces labor costs by replacing a number of hands-on health and safety training positions.

Virtual reality is being used to teach veterinary students about the reproductive and rectal tracts of the cow. Created by former vet Sarah Baillie, the Haptic Cow is a fiberglass model of the rear of a cow that combines virtual reality with robotics. The VR aspect is provided by a computer that allows students to visualize an object within the cow — virtually enabling them to practice fertility examinations, such as pregnancy detection, or determine reproductive concerns without putting them in a situation that could be dangerous for both the cow and the student.

DeLaval is creating virtual reality films of farms available in 360 degrees, allowing viewers to scroll from side to side to view the entirety of the dairy barn. The Hamra Farm in Sweden, for instance, showcases the innovative techniques they implement on their farm, such as robotic milking machines, robotic brushes, robotic cleaners and more, in their VR film. These "farm tours" will allow consumers to better understand where their dairy comes from. There is much discussion about animal welfare, and giving consumers an opportunity to experience firsthand how a dairy farm operates is an important component of influencing perception the industry.

Blockchain

It is well known that consumers are increasingly becoming interested in where their food comes from and how it is produced. Blockchain can connect all aspects of the supply chain from producer to consumer and allow for food traceability and safety. From an agriculture and food perspective, offering this type of information to consumers will become a competitive advantage and may not prove as challenging in dairy as in other areas of agriculture, such as beef, which exchanges ownership more frequently.

Internet of Things

Together these eight technologies are creating opportunities within the dairy industry for increased efficiencies, profitability and production. The connectivity of these technologies is made possible through the Internet of Things (IoT).

Agriwebb is a company using IoT for full farm recordkeeping, including field management, inventory, operations, grazing and even biosecurity. Stellapps in India leverages IoT to offer all manner of products, from general herd management to milk evaluation, payment processing and cold chain monitoring. Dell Technologies is also heavily involved in IoT applications and is working with dairy producer Chitale.

Cargill is working with SCiO (Consumer Physics) to create Reveal, an app designed to deliver content of feed within minutes. Previously, this type of technology was either time-intensive (waiting on lab results) or expensive (specialized equipment cost thousands of dollars). Using a micro spectrometer with NIR calibrations, Cargill and SCiO offer this simple service using producers' own devices, and results are available in a minute's time.

Keenan.jpg

IoT technology is how the KEENAN InTouch system is able to provide farmers with the nutritional information they need to ensure the best formulation possible. KEENAN’s feed mixers are designed to give uniformity to feed, allowing for improved digestion in the ruminant and creating rations that are both chemically and physically balanced. The cloud-based system enables producers to monitor feed waste and make necessary changes to improve efficiencies and decrease costs.

Using the data

In the past, farm management applications have allowed farmers to make strategic management decisions based on the collection of farm data. Inevitably once nutritional decisions are being made, sciences such as nutrigenomics and decisions about smart nutrition are critical to taking advantage of this enhanced data and management information systems. Nutrigenomics research has shown that specific nutrients and inclusion of enzymes can greatly impact milk yield.

Previously, collected data was generalized for an entire dairy farm. Through the use of sensors, AI and other technologies, farm management apps like FarmWizard can provide individual data for each cow, allowing farmers to improve precision and accuracy when making managerial decisions. 

AI.jpg

Dairying in 2067 won’t look anything like the dairy farming of the recent past, let alone the era when the first cow was domesticated. Changes are happening so fast that the connected farm is likely to be the norm within the next 10 years. By implementing the eight technologies described here, along with the interconnectivity of IoT, farmers will be able to capture and have direct access to individual cow data, both current and historical. This will enable farmers to bridge the data gap and improve dairy production through digitization. The winners will be those who embrace this disrupted digital dairy landscape.

 

I want to learn more about implementing new technologies on my dairy farm.

<>Premium Content
Off
<>Featured Image
<>Date
<>Featured Image License
Off
<>Hubspot
<!--[if lte IE 8]>
<script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2-legacy.js"></script>
<![endif]--><script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2.js"></script><script>
hbspt.forms.create({
portalId: '745395',
formId: '2c5ba201-30c0-4669-9dc4-c9711ca1b006'
});
</script>
<>Feature
On
<>Primary Focus Area
<>Animal Nutrition Focus Areas
<>Article Type
<>Regions
<>Image Caption

Emerging digital technologies hold promise for revolutionizing dairy, from management of the herd to management of the individual cow.

Calving considerations: 3 tips for early nutrition

Submitted by ldozier on Wed, 04/04/2018 - 15:32

In a recent webinar, Dr. Shelby Roberts, a postdoctoral research fellow at the Alltech Center for Animal Nutrigenomics and Applied Animal Nutrition, used her knowledge of ruminant health and immunology to take a closer look at calf gut health and the importance of nutrition during the first weeks of the calf’s life. Here are a few points to keep in mind in the midst of spring calving.

1. The importance of colostrum for the calf’s immune system

Colostrum is the mother’s first milk and the calf’s first source of immunity and nutrients. Antibodies from colostrum protect calves until their immune systems are fully functional. However, the first couple weeks after birth can be a period of elevated risk as the maternal antibodies disappear and the calf’s immunity is maturing, as shown in the diagram.

CALVING CHART_0.png

2. The balancing act between pathogenic and non-pathogenic bacteria

Good bacteria (e.g., lactobacilli, bifidobacteria) are constantly fighting to keep the pathogenic bacteria (e.g., E. coli, Salmonella) in check, but the immune system is also fighting the pathogenic bacteria. The immune system and the good bacteria work together to keep the cow healthy and to suppress the pathogenic bacteria. When antibiotics are used, this clears out the pathogenic bacteria AND the good bacteria. While recolonizing the gut, the cow is at risk for pathogenic bacteria recolonizing at a quicker rate than the good bacteria, leaving the immune system as the last and only line of defense when antibiotics are removed.

3. The new research behind Bio-Mos® is here

Since the 1980s, Alltech has been conducting studies on its signature product, Bio-Mos. The calf research on Bio-Mos has shown the following results:

  • Maintenance of gastrointestinal health
  • Alteration of intestinal microbial populations
  • Stimulation of immune activity
  • Stimulation of the natural defenses of the animal 

When it comes to receiving diets, Bio-Mos has also been tested. In a study conducted in a commercial feedlot in Southern Alberta in Canada, 902 mixed-breed, newly weaned beef cattle were split into two groups, one fed a control and one supplemented with Bio-Mos. Cattle fed Bio-Mos showed improved average daily gain and maintained a healthy immune response. 

 

Have a question or comment?

<>Premium Content
Off
<>Featured Image
<>Date
<>Featured Image License
Off
<>Hubspot
<!--[if lte IE 8]>
<script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2-legacy.js"></script>
<![endif]--><script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2.js"></script><script>
hbspt.forms.create({
portalId: '745395',
formId: 'e4b8cd32-e447-42d0-8665-673f8d56b8fe'
});
</script>
<>Feature
Off
<>Primary Focus Area
<>Animal Nutrition Focus Areas
<>Article Type
<>Challenges
<>Products
<>Image Caption

Proper nutrition and gut health are crucial during the first weeks of the calf’s life.

The missing element in your cow's forage

Submitted by clbrown on Mon, 03/19/2018 - 14:10

By Brian Springer, CCA

Sixty percent of a dairy cow’s diet is forage. With so much of the diet dependent on the nutrients a cow receives from forage, it is important to make sure the crop reaches its nutrient and energy potential. Nitrogen, phosphorus and potassium, the major components of fertilizer, are essential for soil nutrient content and are controlled by pH. We test and fertilize for these nutrients regularly, and they are often the first place we look for a solution if a problem arises in crop health.

However, critical elements — like calcium, magnesium, and sulfur — are often seen as secondary in importance in terms of soil content, and, in turn, plant health. For example, with current industry practices, recent findings show that sulfur deficiency of 10 to 20 pounds per acre is common in much of the United States. Of these elements, sulfur in particular might be the missing piece in your forage puzzle as it increases nutrient quality and aids in balancing the microflora in the rumen.

Common Sulfur Sources

Type of Sulfur

Molecular Formula

Common Presence

Amount of Sulfur

Non-Soluble

(S)

Elemental Sulfur

100%

Semi-Soluble

CaSO4

Calcium Sulfate or Gypsum

15–17%

Soluble (Organic)

(NH4)2SO4

Ammonium Sulfate

24%

 

MgSO4.7H2O

Epsom Salt

13%

KMgSO4

Kainite

23%

K2SO4

Potassium Sulfate

18%

NH4S2O3

Ammonium Thiosulfate

10–26%

 

 

 

 

 

 

 

 

 

 


What is sulfur?  

Sulfur is one of the 17 elements essential to crop production. This is because, according to the International Plant Nutrition Institute, plants almost exclusively use sulfate as their primary source of nutrition. It can be found in high levels in salt domes and volcanic deposits, typically in its elemental form. But it is also present in almost all soil types in smaller quantities.

Plants receive sulfur through two primary mediums:

  • Soil: The sulfur found in soil is typically organic sulfate that has been converted from elemental sulfur by soil bacteria. Ninety-five percent of plant sulfur uptake is in the organic form of sulfate.

  • Air: Inorganic sulfur dioxide is often absorbed through the leaves and stoma.  

What role does sulfur play in forage plant and dairy cow processes?

Required by both plants and animals, sulfur appears in every living cell and is essential for the synthesis of certain amino acids and proteins.

A deficiency of sulfur in the soil can lead to deficiencies in the cow. Nutritionists recommend 0.2 percent of sulfur or sulfate in the diet of cattle, and ensuring your forage has enough sulfur is the easiest and most cost-effective way to manage sulfur requirements for the ration. Most of the dietary sulfur required by the cow is actually utilized by the rumen microbes for amino acid production. By feeding the microbes, the cow can produce amino acids, enzymes and proteins that then contribute to cow health, milk production and quality.

Not only will the sulfate aid the cow, but plants use sulfate for chlorophyll formation, which contributes to higher sugar content and nutrients, resulting in greener, fuller foliage.

What does our current sulfur landscape look like?

In recent years, there has been a decrease in soil sulfur content as well as an increased demand on the soil for higher crop yields, and the fact that many fertilizers contain little to no sulfur is the primary reason for our current depletion of sulfur in the top soil. Secondary causes include erosion and mineralization.

How to recognize a sulfur deficiency

Since high-yielding crops often don’t receive adequate amounts of sulfur or receive it at inopportune times, it is important to be able to recognize a sulfur deficiency. Thankfully, if presented in its organic form, sulfate can quickly be absorbed in two to three days, which helps avoid leaching as you fertilize. If you notice some of the following signs of sulfate deficiency, it is recommended to provide a sulfur treatment two to four days before cutting forage to increase chlorophyll, resulting in a fuller, energy-rich harvest.  This short-term solution can be done by applying biostimulant products, as a sulfur application would need to take place much earlier in order to keep the plant healthy and growing well. Signs of sulfur deficiency include:

  • Yellowing of young growth; yellowing of old growth indicates a nitrogen shortage.

  • Curling of young leaves.

  • Diminished foliage.

 

Plant Pic.jpg

Photo is provided courtesy of the International Plant Nutrition Institute (IPNI).

Although sulfur is present in the soil, it is often below recommended standards. Furthermore, in its inorganic sulfur state, it cannot be properly taken up by the plant until it has been converted to organic sulfate. By checking your forage crop for sulfur deficiency and treating as needed, you can increase the sugar and nutrient quality of your forage and provide sulfur to your herd to support rumen microflora health.

Have a question or comment?

<>Premium Content
Off
<>Focus Areas
<>Featured Image
<>Date
<>Meta Description
Sulfur appears in every living cell and plays an essential role in the health of many plants and animals.
<>Featured Image License
Off
<>Image Caption
By checking your forage crop for sulfur deficiency and treating as needed, you can increase the sugar and nutrient quality of your feed.
<>Species
<>Regions
<>Focus Areas (taxonomy)
<>Industry Segment
<>Hubspot
<!--[if lte IE 8]>
<script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2-legacy.js"></script>
<![endif]-->
<script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2.js"></script>
<script>
hbspt.forms.create({
portalId: '745395',
formId: 'd2b1a74a-d16c-4ea9-b2fd-b17b4c1cfc91'
});
</script>
<>Feature
Off
<>Primary Focus Area
<>Animal Nutrition Focus Areas
<>Crop Science Focus Areas
<>Article Type
<>Regions
<>Topics
<>Image Caption

<p>By checking your forage crop for sulfur deficiency and treating as needed, you can increase the sugar and nutrient quality of your feed.</p>

The silage slump

Submitted by aeadmin on Fri, 09/08/2017 - 00:00

In “The corn conundrum,” we looked at some of the causes of the dreaded “fall slump.” Now we will look at some of the ways to prevent the slump as well as tools to help diagnose it.

Dry matter at harvest

We all know the importance of proper dry matter at harvest. Checking whole plant dry matter for each field is a good first step to having the correct dry matter at harvest.

Chopping too early can lower the starch content of the corn silage and impede fermentation, which can also contribute to the environmental issue of leachate. On the other hand, chopping too late (&gt;40 percent dry matter) can lead to a separate set of problems, such as mycotoxins, poor fermentation, yeast production, decreased starch digestibility and a longer window for total starch digestion.

If we monitor the seven-hour starch digestibility and ammonia levels of fresh corn silage, it can tell us a lot about how the corn is fermenting. Typically, fall corn silage will be low in both the seven-hour starch and ammonia. As the silage ferments over 240 days, the ammonia levels rise and the starch digestibility increases.

Silage inoculants and crop quality

We know that inoculants can speed up fermentation and lower pH, thus saving energy for the cow. Inoculants enable us to get into the piles, bags, bunkers and silos even faster than before.

Future outlook is strong is this area. Work is being done on combinations of inoculants and enzymes to assist in both starch digestion and fiber digestion, which will serve to further our efficiencies.

Inoculants can cater to front end fermentation or feed out protection. Cater your inoculant to your individual situation.

Inoculants coupled with a quality mold inhibitor can be the ultimate line of defense against molds, top spoilage and stability issues. Mold-Zap®, a buffered propionic acid, has been the gold standard in alleviating seasonal total mixed ration heating, but very keen dairymen also use it for preventing top spoilage in bunkers, drive over piles and on silage faces.

Corn Silage Processing Score

Shredlage, a new corn harvesting method for silage, is gaining acceptance. Most importantly, shredlage processing has led to a renewed interest in proper corn silage kernel processing with the choppers many producers already have. With proper corn silage processing, the kernels can be processed down to the new standard of ¼” kernels.

The Corn Silage Processing Score (CSPS) is a great testing tool that is run at virtually all the forage labs in the U.S. because it will assess how well the corn silage has been processed. A Corn Silage Processing Score in the 40–60 percent range is common in unprocessed corn silage and can equate to lost milk. Setting a goal of achieving a processing score above 70 percent will help you reduce the corn silage slump and the impacts it has on your herd.

Before we get CSPS numbers back, is there another way to know if we are correctly processing the corn silage? A new technique involving “floating” fresh corn silage is getting some attention, and it’s easy to find articles and images of the procedure online. The process is very simple and can be accomplished in the field, right at the chopper, but you will need a sample of fresh corn silage, a 5-gallon bucket and some water.

  1. Fill the 5-gallon bucket three-quarters full with water.
  2. Take a 32-ounce cup of fresh corn silage and pour it into the bucket of water.
  3. Stir it around for a few minutes.
  4. Sift out the fiber particles that float to the top.
  5. Dump the water and be sure to save the kernels.
  6. Inspect the kernels to ensure that most of the kernels are quartered. The old concept of “nicked” kernels being sufficient is now antiquated advice.

Monitor the back end

It is a dirty job, but someone really does have to do it. Manure can tell you a lot about how things are working inside the cow.

It’s worthwhile to consider a couple of tools that have been around for a few years.

The Penn State Particle Separator has been used for years to monitor fiber levels in the diet. The particle separator’s “messy” cousin, the manure screen, can tell you just as much, if not more. The true value of manure screening is monitoring over time and with ration changes. With the transition to new crop corn silage, you can see the impact of the new feed. Many times with new crop corn silage, you will see the kernel remnants in the middle screen and fiber changes in the various screens. Benchmarking your manure screens is a great approach because it will enable you to see what the rumen is doing and you can make ration adjustments quicker than if you use a paper-only approach.

While we are messing around with the manure, there is yet another tool that is underutilized, and that tool is fecal starch. Fecal starch testing is done at most commercial feed labs and can tell you a lot about kernel processing and starch digestion, so it can help you to confirm your CSPS scores and the level of starch digestion. Your goal should be to keep the fecal starch under 3 percent, even though you can commonly see the levels initially rise with new crop corn silage samples.

Aiding in the new crop silage transition

Some of the undigested corn can bypass the rumen and cause hindgut fermentation, which can lead to indigestion and rumen upset. The starch-digesting enzyme Amaize® and certain strains of Saccharomyces cerevisiae can assist in breaking down starch and maintaining a proper rumen environment.

Additionally, we know that soluble protein and ammonia levels are at lower levels in fresh corn silage. Products that assist in adjusting the rumen degradable protein levels can help jumpstart the rumen microbial production and assist in starch and fiber digestion. Optigen® can help fuel the rumen in the absence of good new crop soluble protein and ammonia levels.

Don’t feed it, but if you must…

Ultimately, the best way to reduce the fall corn silage slump is not to feed it. It may be frustrating to receive that advice, but it remains true. Starch digestion is often slow, and new crop corn silage should be given three months to properly ferment. Obviously, the longer the fermentation, the better, but there should be a plan in place to have a few months’ carryover of your corn silage crop.

When we must feed fresh corn silages, the tools discussed above can help to reduce the corn silage slump. Ask your local Alltech representative for more information on how we can help you to reduce the new crop corn silage blues.

Not sure who your local Alltech representative is? Fill out the form below to learn more.

<>Premium Content
Off
<>Featured Image
<>Date
<>Page Title
The silage slump
<>Meta Description
Forage quality expert John Winchell shares some ways you can prevent as well as diagnose a silage slump on your dairy.
<>Featured Image License
On
<>Image Caption
<p>
The best way to reduce the fall corn silage slump is not to feed it. If that's not an option for you, John Winchell shares some ways that you can prevent and diagnose a silage slump.
</p>
<>Industry Segment
<>Feature
Off
<>Primary Focus Area
<>Animal Nutrition Focus Areas
<>Article Type
<>Image Caption

<p>
The best way to reduce the fall corn silage slump is not to feed it. If that's not an option for you, John Winchell shares some ways that you can prevent and diagnose a silage slump.
</p>

Webinar: Mineral form and function: The role minerals play in herd health

Submitted by aeadmin on Mon, 07/31/2017 - 00:00

WHAT: Join Dr. Roger Scaletti, Alltech mineral management program technical support and sales for North America, for a live webinar covering trace minerals, their role in livestock health and performance, and how they can be used to optimize herd health, udder health and reproduction. Scaletti will also discuss how to choose the right mineral and how form can play a substantial role in mineral retention.

Scaletti received his bachelor’s degree in animal science from Pennsylvania State University in 1995 and his Ph.D. in animal science from the University of Kentucky in 2003. He has traveled around the world to discuss mineral nutrition and mastitis.

WHEN: Thursday, Aug. 3, 2017

2:00 p.m. ET

WHERE: Reserve a spot now via this link. If you are unable to attend the live webinar, you can register via the link to receive the recording.

OTHER: Scaletti’s presentation will be followed by a live question-and-answer session.

<>Premium Content
Off
<>Featured Image
<>Date
<>Page Title
Webinar: Mineral form and function: The role minerals play in herd health
<>Meta Description
Join Dr. Roger Scaletti, for a live webinar covering trace minerals, their role in livestock health and performance.
<>Featured Image License
Off
<>Image Caption
Join Dr. Roger Scaletti, Alltech mineral management program technical support and sales for North America, for a live webinar covering trace minerals.
<>Regions
<>Topics
<>Feature
Off
<>Animal Nutrition Focus Areas
<>Article Type
<>Regions
<>Topics
<>Image Caption

<p>Join Dr. Roger Scaletti, Alltech mineral management program technical support and sales for North America, for a live webinar covering trace minerals.</p>

Study shows Bio-Mos® plus milk equals daily weight gain in calves and more milk in first lactation

Submitted by aeadmin on Wed, 06/14/2017 - 00:00

[DUNBOYNE, Ireland] – Dairy producers strive for long-term production and productivity with their herd, right from the start, and the pre-weaning growth of a dairy calf is a good indicator. While diarrhoea is one of the most common antagonists in issues with poor digestion and weight gain in calves, supplementing with Bio-Mos® has been shown to enhance performance and improve gut health.

A recent meta-analysis conducted by Dr. Anna Catharina Berge of Berge Veterinary Consulting BVBA concluded that Bio-Mos® supplementation in milk or milk replacer increased daily weight gain in dairy calves. These trials revealed, on average, 0.14 pounds improved weight gain per head per day in pre-weaned dairy calves, which corresponded to 8.37 pounds increased weight for calves weaned at two months of age. The long-term improved performance in heifers with improved pre-weaning growth would be equivalent to 220 pounds more milk in the first lactation, generating additional farm income, and improving gut health and digestive function.

“The results are a significant improvement in average daily weight gain,” said Aidan Connolly, chief innovation officer and vice president of corporate accounts at Alltech. “This improvement leads to greater returns for the producer through enhanced milk production, health and development, and long-term productivity.”

The meta-analysis included 23 cohort studies performed in the U.S.A., the United Kingdom, Brazil, Chile, the Czech Republic, India, Japan, Peru, Poland, Spain, and Turkey between 1993 and 2012. Bio-Mos was supplemented at 2–10 grams per day, with an average inclusion of 3.8 grams per day. Twenty-one of the studies reported an increase in daily weight gain for calves fed Bio-Mos in milk or milk replacer compared to control calves.

For more information on Bio-Mos, visit http://go.alltech.com/bio-mos.

<>Premium Content
Off
<>Featured Image
<>Date
<>Page Title
Study shows Bio-Mos® plus milk equals daily weight gain in calves and more milk in first lactation
<>Meta Description
Dairy producers strive for long-term production and productivity with their herd, right from the start.
<>Featured Image License
Off
<>Image Caption
A meta-analysis conducted by Berge Veterinary Consulting BVBA concluded that Bio-Mos® supplementation in milk or milk replacer increased daily weight gain in dairy calves and led to more milk in first lactation.
<>Regions
<>Post Type
<>Topics
<>Feature
Off
<>Animal Nutrition Focus Areas
<>Article Type
<>Regions
<>Topics
<>Image Caption

<p>A meta-analysis conducted by Berge Veterinary Consulting BVBA concluded that Bio-Mos® supplementation in milk or milk replacer increased daily weight gain in dairy calves and led to more milk in first lactation.</p>

5 tips for monitoring your herd’s rumen health

Submitted by klampert on Sat, 07/16/2016 - 09:14

France is the cradle for many famous breeds of beef animals that are used globally. Three of the most preferred French breeds are the Charolais, known for its high growth performance; the Limousine, renowned for its rearing abilities; and the Blonde d’Aquitaine, recognized for its ability to produce a high percentage of meat.

With more than 4 million suckler cows, France has one of the biggest cow-calf systems in Europe. Typically, a French farmer will have both a cow-calf system and a fattening unit for heifers, cows and culled young bulls. This allows for the entire process to be completed in one place, limiting the carbon footprint.

“Despite the many successes on French farms, acidosis is a challenge that often occurs in beef herds,” said Thomas Pacalier, a member of the 2015 Alltech Career Development Program. “Cattle that are fed corn silage-based diets consume a higher level of starch, which can cause them to develop acidosis. Fortunately, there are several simple steps that can be carried out to diminish the likelihood of an animal being affected.”

  1. Check the color of the horns. White is a sign that the rumen is operating at its optimum level, while red should be considered a warning sign.
  2. Take note of the animal’s behavior, as those suffering from acidosis may behave more aggressively (e.g., fighting with pen-mates).
  3. Analyze the manure; ideally, loose stools with a lot of undigested grain or fiber should be avoided.
  4. Watch how the animal walks and stands. Lameness can indicate that the rumen is not functioning at the desired level.
  5. Ensure the cattle are lying down and chewing after feeding. If less than 50 percent of the herd displays this type of behavior in the hours after eating, there may be an issue with digestion.

To avoid issues such as acidosis, it is important to take a regular look at the animal and its behavioral patterns. The diet should be prepared with a mixture of starch from various sources, while rough fiber should be added to the feed in order to stimulate the rumen. Maintaining a healthy rumen is the basis for ensuring high feed efficiency levels, which allow your herd to reach its peak performance. It is important to remember that small changes to the diet or management practice can unintentionally disturb rumen health. Therefore, it is important to adapt the diet in response to the insights gained from studying the animal.

Have a question or comment?

<>Premium Content
Off
<>Featured Image
<>Date
<>Featured Image License
Off
<>Hubspot
<div>&nbsp;</div>
<!--[if lte IE 8]>
<script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2-legacy.js"></script>
<![endif]-->
<script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2.js"></script>
<script>
hbspt.forms.create({
portalId: '745395',
formId: 'e4b8cd32-e447-42d0-8665-673f8d56b8fe'
});
</script>
<>Feature
Off
<>Primary Focus Area
<>Animal Nutrition Focus Areas
<>Article Type
<>Challenges
<>Topics
Subscribe to Rumen Health
Loading...