Skip to main content

Observe body condition score at calving — and before

Submitted by aledford on Mon, 11/08/2021 - 11:22

Calving season is gametime for a cow herd, and producers want to make sure that their cows are in peak condition prior to kick-off. The best way to measure the condition of your cow herd is by utilizing body condition scores (BCS). As the name suggests, a BCS is an estimate of a cow’s condition or the amount of fat they are carrying.

The amount of fat — and its placement — determines BCS.

Body condition scoring is an easy and effective tool for producers to use, but a familiarity with the fat deposition and skeletal structure of cattle is required to properly determine BCS. The key areas used to evaluate the degree of body fat on cattle are the ribs, brisket, hooks, pins and tailhead. Typically, for beef cattle, a scale of 1 to 9 is used to indicate BCS, with 1 being emaciated, with all of the cow’s ribs and bones easily visible, and 9 being obese.

  • Thin cows have a BCS of 1 to 3
  • Moderate-condition cows have a BCS of 4 to 6
  • Fat cows have a BCS of 7 to 9

The ideal BCS for mature range beef cows at calving is a score of 5, and for calving heifers, an ideal BCS would be a 6. This difference in BCS at calving is because heifers are still growing and have a higher nutrient requirement for growth compared to mature cows.

Evaluate BCS prior to calving and breeding.

Timing is important when evaluating body condition scores. Producers should aim to evaluate BCS prior to the calving and breeding seasons. Suggested evaluation timepoints include 90 days prior to calving, breeding and the start of the winter season. This will give the producer enough time to try to improve BCS if cows aren’t hitting their target prior to breeding and late gestation.

Body condition scores can be used as a nutritional management tool. For instance, depending on a producer’s facilities, cows can be sorted into groups using BCS. Cows that meet or have above-target BCS scores need no special nutritional intervention and can maintain condition on quality range pasture. Cows with low body condition scores or replacement heifers could be supplemented with additional nutrients to improve or maintain their body condition during calving and breeding.

Another good time to evaluate BCS is heading into winter grazing. Cows that are thin at the start of winter grazing will require supplemental feed just to maintain their body condition, as energy requirements increase up to 40% during the winter. Additionally, trying to improve BCS during the winter is going to cost 20–30% more than during the fall.

 A poor BCS can negatively affect a cow’s calf.

The productivity of a cow herd depends on keeping them within the producer’s ideal BCS. It is well-established that a poor BCS can have detrimental effects on a cow’s reproduction. Thin cows take longer to come into heat and, therefore, only have one chance at rebreeding. Over-conditioned or fat cows can also negatively impact reproduction rates. However, a poor BCS can also affect the overall health and performance of a dam’s calf.

The relationship between cow BCS and calf performance is based on the energy requirements of the cow. To maintain an ideal BCS, cows must have enough energy to support all of their bodily energy requirements. When a cow’s energy requirements are not met by her diet, then she must use the energy stored in her body as fat. The more stored energy she uses, the further she moves down the BCS scale.

There is a priority use for energy for bodily functions, as outlined below:   

Priority energy use by cows (adapted from Short et al., 1990)

  1. Basal metabolism
  2. Grazing and other physical activities
  3. Growth
  4. Supporting basic energy reserves
  5. Maintaining an existing pregnancy
  6. Milk production
  7. Adding to energy reserves
  8. Estrous cycling and initiating pregnancy
  9. Storing excess energy (i.e., fat deposition)

This hierarchy shows that maintaining pregnancy (i.e., gestation), milk production and reproduction are all lower on the list of energy-use priorities. This illustrates the importance of cows consuming enough energy from their diet to meet their maintenance requirements before energy can be used for pregnancy and milk production.

A cow’s BCS affects her reproductive ability, too.

Evaluating BCS at 90 days prior to calving — when cows are about to enter late gestation — is critical, as this is a moment in time that could impact the future growth and performance of her calf. Seventy- five percent of calf growth occurs during the last 60 days of gestation, meaning that the cow’s energy requirements are going to be higher for the last 60 days of her pregnancy. If cows are thin going into the third trimester of pregnancy, then there could be reduced calf growth due to a lack of energy available for supporting the pregnancy.

Smaller calves are more prone to sickness after birth. Weaning weights have also been shown to be lighter when cows have a poor body condition. Until weaning, milk is the major energy and nutrient source for calves. If cows are in poor body condition, they lack the energy necessary to produce the quality milk needed for calf growth.

Research has shown that herds that maintain cows with the ideal BCS ranges (5–7) have better calving and weaning percentages, which are a measure of the herd’s overall reproductive and production efficiency. Thin cows are going to have a harder time maintaining pregnancies and growing calves. A poor BCS leads to fewer pregnancies, fewer calves weaned and calves weaned at a lower weight, which leads to lower overall returns.  

Body condition scoring helps evaluate the nutritional status of the cow herd.

Producers should routinely check the body condition scores of their herds to continually monitor the condition and nutritional status of the cows. If a large portion of the cow herd has a low body condition score, the herd nutrition should be evaluated to make sure that their energy and protein requirements are being met. A prolonged poor BCS can have a harmful impact on production outcomes, which can also negatively impact the economic returns of an operation. Evaluating BCS to determine not only the herd’s reproduction readiness scores but also its nutritional status is an opportunity to positively impact calf performance.

 

Short, R. E., R. A. Bellows, R. B. Staigmiller, J. G. Berardinelli, and E. E. Custer. 1990. Physiological mechanisms controlling anestrus and infertility in postpartum beef cattle. J. Anim. Sci. 68:799-816.

 

I want to learn more about nutrition for my beef cattle.

<>Premium Content
Off
<>Featured Image
Body condition score at calving
<>Date
<>Featured Image License
Off
<>Hubspot
<!--[if lte IE 8]>
<script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2-legacy.js"></script>
<![endif]-->
<script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2.js"></script>
<script>
hbspt.forms.create({
portalId: "745395",
formId: "e4b8cd32-e447-42d0-8665-673f8d56b8fe"
});
</script>
<>Feature
Off
<>Primary Focus Area
<>Animal Nutrition Focus Areas
<>Article Type
<>Topics
<>Content Author

The signs and cost of fescue toxicosis in cattle

Submitted by aledford on Fri, 03/26/2021 - 08:41

The pathology of cattle consuming endophyte-infected tall fescue varies greatly based on the weather and the alkaloid concentration. The most readily apparent signs of fescue toxicosis include reduced feed intake, weight gain, milk production and reproductive efficiency, as well as tissue necrosis and a rough hair coat. Decreases in productivity caused by fescue toxicosis are estimated to cost U.S. beef producers more than $2 billion annually (Kallenbach, 2015).

Absorption of alkaloids

Calculating the animal’s retention of ergot alkaloids is difficult due to biotransformation. Generally, it is estimated that 76–92% of consumed ergot alkaloids are absorbed, with the other 8–24% excreted in the feces. The math on alkaloid absorption and excretion doesn’t always add up, as alkaloids are broken down and/or biotransformed into numerous metabolites. Most alkaloids are ultimately excreted in the urine as lysergic acid.

"Alkaloid graphic"

 

Fescue alkaloids and microbiome shifts

An emerging area of research is the interaction between fescue alkaloids and the microbiome. Decreases in the Erysipelotrichaceae family and increases of Ruminococcaceae, Lachnospiraceae and Clostridiaceae, as well as abundances of Planctomycetes, Chloroflexi and Proteobacteria phyla have been reported for cattle grazing infected fescue. Fescue seed extract, when added to in vitro fermentations, led to increased populations of tryptophan-utilizing bacteria. Considering the tryptophan base of ergot alkaloids, this increase likely indicates an up-regulation in detoxification capacity. The characterization and identification of the three isolates with the highest conversion abilities found that all three were gram-positive, spore-forming rods that produced ammonia from tryptophan, classified as Clostridium sporogenes.

Receptor-binding of fescue ergot alkaloids

Due to the structural similarity of ergot alkaloids and serotonin, dopamine, norepinephrine and epinephrine, several receptor types in numerous tissues are affected during fescue toxicosis in cattle. This results in a wide range of effects on physiology and metabolism. As more research examining the underlying mechanisms is completed, the connections between ergot alkaloid receptor-binding and animal performance grow more complex.

Individual animal sensitivity to infected fescue is affected by:

  • Environmental conditions.
  • The density of the receptors.
  • The capacity for liver and ruminal degradation.
  • Other genetic factors.

"Alkaloids binding biogenic amine receptors"

Fescue's effect on weight gains

Ergot alkaloid-induced vasoconstriction reduces heat dissipation, resulting in a variety of physiological fescue toxicosis symptoms in cattle, including an increased respiration rate and elevated core body temperature. Ultimately, this leads to lower weight gains — which is generally known as the summer slump, as animals spend less time grazing as a result of standing in the shade or water to cool off. In colder months, fescue-associated vasoconstriction combines with thermoregulatory vasoconstriction, resulting in tissue death in the extremities, which is commonly known as fescue foot.

Ergot alkaloid consumption also leads to:

  • The thickening of the medial layer of blood vessels
  • Endothelial cell damage
  • Vascular stasis
  • Thrombosis
  • Ischemia
  • Changes in blood pressure, among other cardiovascular effects

Fescue's effect on rumen fill

The frequency and amplitude of the ruminal contractions, as well as changes in eating patterns due to fescue toxicosis in cattle, combine to affect rumen fill, passage rates and intake.

  • Vasoconstriction also reduces blood flow to the rumen, decreasing VFA absorption.
  • Increased rumen fill provides a negative feedback loop, exacerbating reduced intakes.
  • While the total tract digestibility of the feeds is generally unchanged, these alterations work in concert to reduce nutrient availability, contributing to the reduced growth rate frequently observed in cattle grazing fescue.
  • Added to this are the effects of alkaloids on circulating serotonin levels, the hypothalamic center and tryptophan-related satiety.

Fescue's effect on energy metabolism

Ergot alkaloids affect energy metabolism primarily when alkaloid intakes are high and during heat stress. Growth differences in cattle during fescue toxicosis are most likely the result of reduced intake, as no differences in retained energy or energy partitioning were caused by alkaloid ingestion when feed intake was equal.

  • When fed near maintenance, cattle had lower basal metabolic rates.
  • At higher feeding rates, maintenance energy requirements increased.
  • When combined with observed increases in fat loss and a higher capacity for gluconeogenesis in the liver, this indicates the prioritization of energy (when available) toward elevated respiration, thermoregulation and alkaloid detoxification.

Economic losses due to fescue toxicosis

As much as 75% of the economic losses attributed to infected tall fescue pastures are related to decreased calving rates.

For cows:

  • Alkaloid consumption reduces the circulating levels of several hormones important for reproductive efficiency, including progesterone and estradiol.
  • Changes in ovarian follicle development, oocyte quality and luteal function have been reported.
  • When combined with vasoconstriction to the uterus and ovaries, it is no surprise that reductions in reproductive efficiency are seen in cows grazing infected fescue.
  • There is speculation that vasoconstriction in the umbilical cord contributes to low birthweights and diminished fetal development.

On the bull side of the equation, research indicates that ergot alkaloids may:

  • Affect sperm count.
  • Increase the occurrence of abnormal sperm.
  • Alter motility, especially during the summer months.

Fescue's effect on milk production and calving

The structural similarity of ergot alkaloids to dopamine results in reduced prolactin secretion from the anterior pituitary gland. Further, changes in gene expression in the mammary glands of cattle consuming fescue indicate alterations in their lipid metabolism and small molecule transport. Altogether, these changes translate to reduced mammary development and lower milk production. Similar changes in lipid metabolism can be seen in reduced levels of circulating cholesterol and the occurrence of fat necrosis (lipomatosis), and in some cases of long-term alkaloid exposure, these fatty masses can cause digestive issues and dystocia. 

Fescue's effect on hair coat and immune function

Reduced prolactin also leads to the rough hair coat that is often observed in cattle grazing infected fescue. Originally thought to be a retained winter hair coat, it is now known that low prolactin levels increase hair growth rates. As prolactin is a co-factor in humoral immune function, the long-term grazing of infected fescue can lead to depressed levels of immunoglobulins. However, as nutritional levels also affect immune function, more work needs to be done to determine whether altered immunocompetence is a direct result of ergot alkaloid consumption or a secondary effect of a diminished nutritional status. While there is no true fescue toxicosis treatment for cattle, there are ways to mitigate the challenges that fescue presents through management, nutrition and feed additives.

 

References and Additional Reading

Fribourg, H. A., D. B. Hannaway, and C. P. West (ed.) 2009. Tall Fescue for the Twenty-First Century. Agron. Monog. 53. ASA, CSSA, SSSA. Madison, WI. 540 pp. Also (http://forages.oregonstate.edu/tallfescuemonograph).

Kallenbach, R. L. (2015). BILL E. KUNKLE INTERDISCIPLINARY BEEF SYMPOSIUM: Coping with tall fescue toxicosis: Solutions and realities. Journal of Animal Science, 93(12), 5487-5495.

Mayberry, K. J. (2018). Evaluation of Genetic Resistance to Fescue Toxicosis in Purebred Angus Cattle Utilizing Phenotypic Variables, Calf Performance and Cytokine Response. Thesis, North Carolina State University.

Melchior, E. A., & Myer, P. R. (2018). Fescue toxicosis and its influence on the rumen microbiome: mitigation of production losses through clover isoflavones. Journal of Applied Animal Research, 46(1), 1280-1288.

Poole, R. K., & Poole, D. H. (2019). Impact of ergot alkaloids on female reproduction in domestic livestock species. Toxins, 11(6), 364.

 

 

Download a free poster!

<>Premium Content
Off
<>Featured Image
Beef cattle
<>Date
<>Featured Image License
Off
<>Hubspot
<!--[if lte IE 8]>
<script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2-legacy.js"></script>
<![endif]--><script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2.js"></script><script>
hbspt.forms.create({
region: "na1",
portalId: "745395",
formId: "4403c7db-056a-45b5-8794-334d7efc1a24"
});
</script>
<>Feature
On
<>Primary Focus Area
<>Animal Nutrition Focus Areas
<>Article Type
<>Regions
<>Content Author

Are your beef cows ready to rebreed?

Submitted by aledford on Fri, 03/12/2021 - 08:05

For any cow-calf operation, a primary goal is to enhance the ratio of pounds of calf weaned per cow bred annually. A critical component of reaching this goal is keeping the herd as close to a 365-day calving cycle as possible. To this end, shortening the postpartum anestrus interval and increasing first-service conception rates to reduce the need for cattle rebreeding are key topics of discussion and research within the industry. Both nutrition and body condition affect anestrus and conception, dictating the cows’ ability to rebreed successfully.

Identifying and correcting problem cows between calving and breeding is not an easy proposition. As such, the best option is to set a cow up for success before calving by ensuring that her BCS is between 5.5 and 6 and that her nutritional needs are met.

Return to estrus

The length of the postpartum anestrus is fundamental to determining the calving interval. Given a typical 283-day cow gestation period, cows must have a postpartum interval of 82 days to produce one calf every 12 months. Cows cycle from anywhere between 30 to 100 days after calving, with nutrition and cow age contributing to the anestrus length. In beef cows, the uterus returns to its non-pregnant size by around 30 days post-calving. Before cows are ready to cycle normally, an additional 10 days is required to complete the uterine involution.

Beef cows that calve early in the season and cycle early have better chances of fully completing their uterine involution and returning to their normal cyclicity before the start of the breeding season. Cows that are cycling before starting the breeding season are most likely to conceive on first breeding — and within the first 21 days of the breeding season.

Research has also shown that the nutritional requirements for beef cattle in late gestation affect the cow’s health and return to normal cyclicity. The importance of body condition scores and nutrition in relation to conception and pregnancy rates has been thoroughly studied, with results indicating that:

  • Cows need access to sufficient protein and energy to calve with a BCS between 5.5 and 6. Not only is being in the proper condition important for allowing the cow to produce high-quality colostrum, but this BCS must then be maintained throughout the breeding season.
  • Underconditioned cows are slower to cycle, skewing the 365-day calving cycle, and cows that lose condition between calving and breeding are significantly less likely to conceive.
  • Immediately following calving, the cow is using the nutrition she is provided with to recover from the stresses of the gestation period and calving, as well as to produce milk for her new calf. Only after those needs are met will the cow redirect her energy and nutrients toward preparing for the next breeding season.

A significant body of external work supports the use of fat supplementation to enhance reproduction, generally in relation to managing cattle BSC and/or avoiding a negative energy balance in transition animals. In these cases, oleic acid (C18:1) may be the preferred fat source, as it boosts energy being partitioned toward the cow’s body reserves. 

Alternatively, stearic acid (C18:0) is preferentially used as an energy source, and dietary supplementation may reduce the cow’s reliance on mobilizing her body reserves. All fat feeding should be carefully considered — especially the type of fat and the timing of the feeding, as there are instances in which supplemental fat has reduced reproductive efficiency by increasing anestrous, reducing intake and, in turn, the energy balance, or inhibiting prostaglandin synthesis.  

Conception success and embryo mortality

A lot of attention is given to conception rates in beef cattle. However, research from Ft. Keogh in Montana indicates that 90–100% of cows will conceive at first breeding and that it is actually early embryo mortality that gives rise to many open cows. 

  • Approximately 25% of cows suffer embryonic loss before the 28th day of their gestation period, with a further 8% of pregnancies lost before day 42. 
  • Unlike late-term pregnancy losses, early embryo mortality is often not noticed on the farm. These losses are often miscategorized as cows that didn’t catch on the first round of breeding.
  • Embryo mortality is estimated to cost U.S. cattle producers $1.4 billion annually as a result of open cows, lost productive days and rebreeding costs. 
  • Embryo survival is affected by a variety of factors, including maternal and fetal nutrition, genetics, maternal stress, parity and health. As a result, research examining this issue is limited, and often, no clear answer for reducing embryonic loss is determined.  

How nutrition affects reproductive success

Balancing energy and protein in cow diets is important, as lower conception rates are often observed in cows with very high dietary protein intakes. Excess protein can increase the urea concentration in uterine secretions, which results in elevated prostaglandin levels. As prostaglandin is a signal for the body to return to cyclicity, this mechanism may be partly responsible for early embryonic losses in some herds.

As with body condition maintenance, research indicates that fat supplementation may additionally have a direct impact on reproduction.

  • Dietary fat has been reported to increase follicle formation in super-ovulated cows, possibly by increasing the serum insulin levels as a mediating step. 
  • Luteinizing hormone (LH) secretion, which triggers ovulation and CL development, is controlled in part by an animal’s energy status; thus, fat supplementation that enhances the energy balance will also aid in LH regulation.
  • Dietary fat supplementation has also been reported to increase serum progesterone. A poor-quality CL or insufficient progesterone can both be responsible for pregnancy losses before implantation, particularly in cows that are bred on their first cycle after calving. This once again highlights the importance of early calving to provide cows sufficient time to complete their anestrus and return to normal cyclicity before the start of the breeding season.

Beyond energy and protein, trace minerals — such as copper, zinc, manganese and selenium — play key roles in health, metabolism and the general nutritional requirements of beef cattle. Sub-clinical deficiencies in trace minerals can lead to reduced cyclicity and diminished reproductive health. Minerals impact colostrum quality and calf immunity, but their value for the cow should also not be forgotten. 

Optimizing trace minerals can aid in maintaining optimal uterine health by reducing the risk of:

  • Metritis.
  • Retained placentas.
  • Other adverse events that lengthen the time needed for uterine involution and a return to normal cyclicity.

Nutrigenomics research has also shown that minerals affect several metabolic pathways related to the preparation of the endometrium for implantation.

Other factors affecting success

The period before the start of the calving season is a good time to go over your herd health plan. Connect with your veterinarian and other experts to ensure that your management and vaccination programs are in line with the best practices for your region.

This is also a good time to make sure that your recordkeeping is up to date. Diagnosing breeding and reproductive issues is often an exercise in looking back. Working from accurate records can make the difference in identifying the underlying causes and developing a plan to prevent them next year.

The bottom line

Beyond the importance of individual nutrients, timing the supplemental feeding of cows correctly is important. The last 50 to 60 days of the cow’s gestation period are well-known to be critical for colostrum quality, as well as calf health and growth — but preparation for calving and rebreeding go hand in hand. As it takes time for nutrients to be absorbed, metabolized and take effect in the animal, a feeding program to support reproductive soundness and breeding-related stresses should begin before calving and continue through the confirmation of pregnancy.

A few key indicators to monitor are the percentages of mature cows calving during the first 21 days of the calving season and of late-season-calving cows. If either of these metrics run above average, it is time to take a close look at your calving and breeding season program.

Simply put, cows need to be set up for successful rebreeding before calving. Waiting to think about the breeding season until after the calf hits the ground is too late to affect major change in your cow herd’s performance.

 

Download a free poster!

<>Premium Content
Off
<>Featured Image
Cows in field
<>Date
<>Featured Image License
Off
<>Hubspot
<!--[if lte IE 8]>
<script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2-legacy.js"></script>
<![endif]--><script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2.js"></script><script>
hbspt.forms.create({
region: "na1",
portalId: "745395",
formId: "a5f233c9-d36d-4362-90c2-2ad7b9710652"
});
</script>
<>Feature
Off
<>Primary Focus Area
<>Animal Nutrition Focus Areas
<>Article Type
<>Regions
<>Topics
<>Content Author

How cattle vaccination and nutrition connect

Submitted by aledford on Mon, 03/08/2021 - 08:43

Proactive cattlemen are good cattlemen. They have the foresight to combat the inevitable stresses and other challenges their cattle will face. They know that weaning, transportation and other prolonged periods of stress can have a negative impact on immune function and, ultimately, the performance of their animals. So they act to mitigate that stress and, in turn, any health problems their beef cattle are facing. They know that prevention is cheaper than treatment, and they want to see their cattle thrive. Preventative health management practices are key for healthy cattle.

Vaccinations and nutrition have a symbiotic relationship in terms of maintaining healthy immune functions in cattle. While quality nutritional programs are the bedrock of healthy immune function, both nutritional and vaccination programs are important for successful preventative health management on a cattle operation. Preventative health management focuses on promoting an animal’s natural immunity and minimizing the negative growth responses associated with stress and other health challenges.

The role of vaccination

Vaccinating your cattle stimulates their immune systems to produce antibodies that specifically work to combat disease-causing viruses or bacteria. After vaccination, a healthy immune response should translate to a memory of those specific pathogens for the immune system. This memory ensures a rapid response if the animal is exposed to pathogens it has been vaccinated against and allows the animal to avoid infection. Disease challenges vary between different geographies, so it is important to work with your local veterinarian to develop vaccine protocols, as they can identify and walk through the specific needs of your operation.

Although your needs may vary based on your herd and geography, there are a few vaccines that we typically consider crucial for beef cattle, such as a scours vaccine and vaccinating for the bovine respiratory syncytial virus.

Implementing a beef vaccination schedule

While vaccination is generally important, establishing a well-constructed beef cattle vaccination schedule is crucial for vaccine success. One part of that plan — that is, the timing — can make the difference between failure and success. Vaccinations should be timed so that peak levels of antibodies are present when the animal is at the highest risk of infection. Keep in mind that peak levels of antibodies take several weeks to manifest following vaccination, so you’ll want to plan ahead.

The stage of the production cycle will determine the type and timing of the vaccine.

  • Pre-calving: A scours vaccination should happen during late gestation so that the highest levels of antibodies are present in the colostrum. A new calf’s immune system is weak, leaving it susceptible to disease and reliant on colostrum to provide it with much-needed antibodies and protection.
  • Pre-breeding: For added protection for replacement heifers and cows, it might make sense to implement a pre-breeding vaccination protocol. This should be done around 45 days before you are hoping to breed. 
  • Bulls: Keeping your bulls protected may mean implementing an annual vaccination program. Similar to your cows and replacement heifers, these vaccinations may be most effective for bulls around 45 days before breeding.
  • Weaned calves: Vaccinations should be given a couple of weeks before weaning so that peak antibody protection is achieved during feedlot arrival. With weaning, transportation, a new environment and mingling with a new group, this time in a calf’s life is the perfect storm for sickness. Vaccination provides calves with some protection as they start this new stage of their lives.

These programs and protocols are only as effective as they are managed. Poor animal health status at vaccination, improper vaccine handling and inadequate nutritional status can all lead to vaccine failure. A failed vaccine costs more than just the amount of product you had in the syringe; it can lead to loss of gain or even death throughout an entire group of calves. Likewise, it is important to understand that vaccines do not guarantee 100% protection and may only provide protection for a period. Even so, can we increase the effectiveness of the vaccine through proper nutrition?

The role of nutrition

Meeting an animal's nutritional requirements is essential for the proper development, maintenance and function of its immune system. Among the other health benefits good nutrition provides, it can also bolster the effectiveness of vaccines and provide longer-lasting protection for cattle. To achieve a nutritional status that supports immune responses, a cattle nutrition program must include energy, protein, trace minerals and vitamins.

  • Energy: Immune responses require an abundance of energy. When cattle are exposed to a disease, their immune systems work hard. In terms of the energy hierarchy, an immune response comes before maintenance and production energy. However, shifting energy to the immune response will decrease the nutrients available for growth or maintenance and can cause a reduction in body condition in dams and reduce growth in feedlot animals.
  • Protein: Proteins are used to produce antibodies. Since the goal of vaccination is to increase the production of antibodies, a protein deficiency can result in substandard antibody production. As with energy, shifting protein from growth to immune function can negatively impact animal performance.
  • Trace minerals and vitamins: The amount of trace minerals and vitamins needed in the diet varies based on the age, role and geography of the cattle, but both vitamins and minerals play an essential role in immune function. Deficiencies in one or more of these nutrients can lead to reduced antibody production.

Nutritional needs at different life stages

Just like with vaccines, the nutritional needs of your cattle will vary based on your specific herd and geography. Factors that can contribute to the nutrition discussion on your operation include the type of facilities your cattle have access to, the feedstuffs used and whether your cattle have experienced health issues in the past. The most important factor, though, is the current life stage of your cattle, as this will dictate the most basic nutritional needs that should be met.

  • Newborn calves: As mentioned above, calves are born with a high susceptibility to disease, requiring them to rely on colostrum to acquire those all-important antibodies. Calves should have a healthy gut from the very start so that they can better absorb the nutrients in colostrum and, as they transition to creep feed, maximize their potential for big gains.
  • Weaned calves: Maintaining a healthy gut in your calves through weaning is crucial to supporting their gastrointestinal integrity, aiding in vaccine success during the receiving period and keeping them healthy in high-stress situations.
  • Cows: The needs of the cows in your herd can vary based on their age and their current stage in the production cycle. Depending on the forage quality, cows may need mineral supplementation for optimum health, immune function and reproductive success.

Herd vaccination programs require an investment of both time and money, and quality nutrition is essential to safeguarding your investment. Talk with your veterinarian about putting together a solid vaccination and nutrition program for your operation. Remember: Proactive cattlemen are good cattlemen, and prevention is cheaper than treatment.

I want to learn more about nutrition for my beef cattle.

<>Premium Content
Off
<>Featured Image
Cow ranch
<>Date
<>Featured Image License
Off
<>Hubspot
<!--[if lte IE 8]>
<script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2-legacy.js"></script>
<![endif]--><script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2.js"></script><script>
hbspt.forms.create({
portalId: "745395",
formId: "e4b8cd32-e447-42d0-8665-673f8d56b8fe"
});
</script>
<>Feature
Off
<>Primary Focus Area
<>Animal Nutrition Focus Areas
<>Article Type
<>Regions
<>Topics
<>Content Author

Take care of your cows and they will take care of you

Submitted by lkeyser on Wed, 07/24/2019 - 10:14

Article reposted with permission from CRYSTALYX®.

Fetal programming, also known as “developmental programming,” has been a hot topic for a number of years now. When we consider fetal programming from a nutritional perspective, we think of the lasting impacts gestational maternal nutrition can have on calves. I have often heard farmers and ranchers say, “If you take care of your cows, they will take care of you,” and this certainly rings true in this instance.

We often think about fetal programming during late gestation. Naturally, we begin thinking about the upcoming calving season after last year’s calves are weaned. We know that nearly 70% of fetal growth occurs during the last trimester — but for a calf to be able to grow at an exponential rate during that time and remain healthy during its postnatal life (which will correlate to increased performance and profitability), giving it a prenatal head start during early gestation will be most beneficial.

Unfortunately, however, maintaining a focus on nutrition often gets put on the back burner during early pregnancy. After all, there’s a lot to keep up with in the summer! Cows and bulls are turned out on grass, we’re busy with breeding, and we get caught up baling forages to feed cows with in the winter. You may think that the cows are doing just fine nutritionally, but they — and their developing calves — might be missing out on more than you realize.

https://ridley-umbraco-media.s3.amazonaws.com/media/1125625/061918-early-gestation-chart.jpg?width=564&height=359

Get with the (fetal) program

Although fetal nutrient requirements are minimal during early and mid-gestation (making up less than 12 percent of the cow’s total requirements), from a production standpoint, gestation begins exactly when the cow’s nutrient requirements are greatest, due to the increased demands of lactation.

The placenta and many vital fetal organs develop during early gestation, which continues up to approximately day 90 in cattle. The placenta is responsible for conveying all of the nutrients and oxygen to the growing and developing calf; it also removes waste products. The placental formation in early gestation is crucial for optimizing vascularity and nutrient transfer to maximize blood flow, which is important for the calf’s overall growth. Research measuring the placenta and studying its effects on gestation has shown that nutrient restriction during early gestation can continue to negatively impact the animal throughout the entirety of gestation, even if the cow is provided with their nutritional requirements during late gestation. The impact of restricting nutrients early on includes smaller placenta sizes and decreased blood flow to the calf (Vonnahme et al., 2007, 2013).

Along with the placenta, the calf’s organs also develop during early pregnancy. Cells are dividing at this time, and this early formation of the organ system is crucial for the calf once it is born. These developing organs — such as the lungs and the gastrointestinal tract — are necessary not only for survival, but also for reproduction and the growth of muscle cells. Studies show that nutrient restriction to the cow during this phase can negatively impact organ development and productivity later in the calf’s life; in other words, restricting the cow also restricts the calf’s genetic potential. Genetic selection happens when the producer is making mating decisions, but you can program the calf during gestation to help increase the profitability of your genetics by providing ideal growing conditions. You have worked too hard with too many generations of your herd to take a step back in calf performance potential by not providing the necessary nutrients during gestation.

In order for these vital organs to develop properly — and to maximize your calves’ genetic potential — make sure your gestating cows don’t run short of critical nutrients, like macro and trace minerals, vitamins and protein. These nutrients generally must be delivered to the cow in forms that go beyond simple pasture forages. An easy way to ensure that these nutrients are provided is through a self-fed supplement, such as CRYSTALYX® Brand Supplements, which are formulated with Alltech’s organic Bioplex®  trace minerals.

A simple way to provide supplementation

As we wrap up the breeding season and get closer to the fall season, pasture conditions and forage quality often begin to decline. We should keep in mind that this can be a stressful time of year not only for us, but also for our animals. Consider what your cows are consuming and think about whether they might benefit from supplementation, beginning now and continuing through early gestation and beyond. CRYSTALYX Brand Supplements are a simple solution to make sure that your cows are consuming the nutrients that both they and the calves by their side and in utero need. 

Let’s face it: the summer months are a busy time for us all. Whether you are getting things done around the farm or ranch, catching up with friends and family, or just trying to stay cool, your cows out on pasture may not be getting as much attention as they need. After all, they can’t take any time off during the critical period of early gestation. Fortunately, you can minimize time and labor — and give yourself peace of mind — by putting out a self-fed CRYSTALYX barrel, which will be available to your cows around the clock. Your cows will essentially be taking care of themselves, and by raising better-performing, more profitable calves, ultimately, they will also be taking care of you.

Fowden, A. L., D. A. Giussani, and A. J. Forhead. 2006. Intrauterine programming of physiological systems: causes and consequences. Physiology (Bethesda) 21: 29-37.

Vonnahme, K. A., M. J. Zhu, P. P. Borowicz, T. W. Geary, B. W. Hess, L. P. Reynolds, J. S. Caton, J. W. Means, and S. P. Ford. 2007. Effect of early gestational undernutrition on angiogenic factor expression and vascularity in the bovine placentome. J. Anim. Sci. 85: 2464-2472.

Vonnahme, K., C. Lemley, P. Shukla, and S. O’Rourke. 2013. 2011 and 2012. Early Careers Achievement Awards: Placental programming: How the maternal environment can impact placental function. J. Anim. Sci. 91: 2467-2480.

 

I want to learn more about nutrition for my beef cattle.

<>Premium Content
Off
<>Featured Image
<>Date
<>Featured Image License
Off
<>Hubspot
<!--[if lte IE 8]>
<script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2-legacy.js"></script>
<![endif]--><script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2.js"></script><script>
hbspt.forms.create({
portalId: '745395',
formId: 'e4b8cd32-e447-42d0-8665-673f8d56b8fe'
});
</script>
<>Feature
Off
<>Primary Focus Area
<>Animal Nutrition Focus Areas
<>Article Type
<>Challenges
<>Products
<>Regions
<>Topics
<>Image Caption

Are you giving your cows the nutrition necessary to contribute to the success of calving and beyond?

<>Content Author

Better sow performance with the right minerals

Submitted by lkeyser on Wed, 08/22/2018 - 10:41

The following is an excerpt from an article by Solutions Deployment Team Manager Dr. Jules Taylor-Pickard on Pig Progress.

Times are long gone when supplying minerals to pigs was one-size-fits-all. Sows have different demands depending on their parity, size and litter size. Supplying the correct amounts will enhance sow performance — and will provide benefits for her piglets, too.

Minerals are important for maintaining the body and ensuring animal performance. In breeding sows, certain minerals are needed for successful conception and parturition. Chromium influences follicle-stimulating and luteinizing hormones and is also needed to produce insulin, which affects progesterone production. Both hormones are required for regulating ovulation and have a direct impact on fertility and litter numbers. Manganese is required for progesterone production, while iron and chromium are required for further hormone activity, which influences embryo survival during pregnancy. Uterine capacity, which dictates the number of piglets born, requires appropriate feeding levels of selenium, iron and chromium.

Breeding animals have higher mineral requirements, since they must produce ova that are robust enough to achieve conception, supply developing fetuses with minerals for correct development and, in the case of mammals, produce milk to suckle their young. As such, breeding sows can often be deficient in mineral intake, especially when tissue reserves are depleted.

Dr. Pickard further delves into the different roles minerals play in supporting optimum sow performance and the difference the right mineral can make to your sows and her piglets. To find out more, read the rest of Dr. Pickard’s article.

 

I want to learn more about nutrition for my pig herd.

<>Premium Content
Off
<>Featured Image
<>Date
<>Featured Image License
Off
<>Hubspot
<!--[if lte IE 8]>
<script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2-legacy.js"></script>
<![endif]--><script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2.js"></script><script>
hbspt.forms.create({
portalId: '745395',
formId: '60231863-171f-40d3-8aab-9c79cd363ae2'
});
</script>
<>Feature
On
<>Primary Focus Area
<>Animal Nutrition Focus Areas
<>Article Type
<>Challenges
<>Products
<>Regions
<>Programs and Services
<>Image Caption

The levels and types of minerals used in sow diets are also important to securing satisfactory reproductive performance.

<>Content Author

Bridging the data gap in dairy farming: The promise of digital technologies

Submitted by lkeyser on Tue, 07/24/2018 - 10:25

By 2067, the per capita consumption of dairy is expected to increase from 87 kilograms (kg)/person to 119 kg (projections). Compounded by a growing population, the dairy industry will need to produce 600 billion kilograms more milk. This means today’s dairy cow will either need to double her production, or we will need to dramatically increase cow numbers! Over the last 25 years, we have increased milk production by 61 percent (about 2 percent per annum) — but can we continue to grow sustainably?

The difference between a high and low performing cow can be considerable. Milk production —  judged by weight — is influenced by genetics and nutrition, but also by inconsistency in mixing of feed, eating behaviors (such as sifting), other cows’ bullying, water quality (or lack thereof!) and environmental factors, such as heat. In ever larger and more intensive production environments, with fewer people wanting to work on farms, management is emerging as an even more significant challenge. In such a setting, dairy farming has focused on managing the average cow, not the individual.

A glaring gap for dairy farmers is data. Farms, especially large ones, don’t know how much an individual cow eats, how much she drinks, how much she moves, her body temperature, stress levels, sickness, etc. Even individual milk production isn’t always recorded in a consistent manner.

How can farmers manage cow comfort, select the best animals for breeding and retaining, judge true profitability, meet prosumer demands for animal welfare and sustainability and raise the bar in terms of milk production? Without precise, real-time, smart data, the task of managing individual cows is nearly impossible. But emerging digital technologies could fill that data gap.

Sensors

More than any other technological advancement, sensors can fill the data gap in dairy farming, particularly when animals are outside in a field. Before the use of technology, monitoring an individual cow’s health was difficult, time consuming and cost-intensive. However, the use of sensors and wearable technologies allows farmers to monitor individual cows. No longer do producers have to work from herd averages; they are now able to determine individual illness or lameness more effectively and react accordingly, quite possibly before milk production or the rest of the herd is affected.

Wearable sensors have proven valuable in managing a cow’s health, and there is no shortage of companies producing this type of technology. Leaders — such as SCR Dairy, which is assessed to have about 80 percent of the market share — produce all manner of wearables worn on a cow’s ears, neck, legs or tail. They can even be implanted subcutaneously or inside the rumen.

Sensors help monitor cow comfort and welfare. Cows need to rest for an average of 11 hours per day; any less than that affects blood flow to the udder and can negatively impact milk yield. Sensors can detect a lack of locomotion and alert producers when to circumvent these negative effects.

Sensors can be used to detect disease signals that are otherwise hard for farmers to notice, such as mastitis. AfiMilk, Agricam, Fullwood, DeLaval, Lely, LIC Automation, MastiLine and Wakaito all claim to detect mastitis in cows and provide producers with early opportunities to combat the issue.

Rumination is also vital to a cow’s production, and sensors designed to be located inside the rumen can monitor acidity levels through a digitally connected bolus. Companies that offer acid monitors — like Smartbow, which was a participant in the Pearse Lyons Accelerator — allow farmers to detect digestive problems, such as ruminal acidosis. 

Livestock Labs has created a tracking technology called EmbediVet, which is implanted underneath the cow’s skin using a local anesthetic. This tracker claims to be less bothersome than wearable sensors and more accurate in gathering data and monitoring behavior.Ingenera offers a line of various sensor products designed to measure cow conformation, weight, udder health and other body metrics.

Moocall, also a participant in the Pearse Lyons Accelerator, produces sensors that detect the heat cycle of the cow by evaluating her responsiveness to a teaser bull. His proximity and behavior can determine her receptivity and alert the farmer's smart device if she is in heat. Afimilk makes a pedometer for cows, alerting farmers of the best time for insemination on the basis that cows walk and move more as they come into estrus.

moocall_sensor.png

Image courtesy of MooCall

Moocall also makes the Moocall Calving sensor, a wearable that attaches to the cow’s tail and monitors her contractions. Connected to the producer’s mobile phone, it sends an alert one hour before active calving, allowing farmers to minimize time spent checking pregnant cows and increase efficiency in time management.

Outside of wearables on cows, there are other examples of sensors in the dairy industry. The startup SomaDetect has developed a sensor that enables farmers to know what is in the milk they produce. Specifically, there is an in-line sensor that measures milk fat, protein, somatic cell counts, progesterone and antibiotic residues (not allowed for human consumption) at every milking. Danish company Foss Analytics has a similar business model, using sensors and NIR.

ENGS systems is implementing their free-flow technology through the Advanced Milk Meter. It collects data on the cow’s individual milk flow rate, quantity, temperature and electrical conductivity and transfers the data to a milk management program for farmers to use.

Artificial intelligence

Big data promises precision agriculture; however, if farmers can’t interpret the data and use it to take action, the data is useless. Artificial intelligence allows producers to analyze the data collected by sensors and other hardware technologies and can provide interpretations and solutions by mimicking human decision-making — potentially transforming how a dairy farm operates.

SCR Dairy is implementing cow, milk and herd intelligence through their sensors and artificial intelligence technologies. They offer sensors ranging from heat detection and calving to health monitoring sensors — including the SenseTime Solution sensor, which detects and charts a cow’s daily activities, such as ruminating, eating and walking patterns. When paired with artificial intelligence software, this sensor provides users with early, proactive solutions to problems. Along with the capability to record information about reproduction, health and nutrition, the sensor also provides farmers with solutions for each individual cow. 

Cainthus_AI.jpg

Image courtesy of Cainthus

Cainthus has developed algorithms for facial recognition software that can monitor a cow’s activity. There is no need for the cows to wear any sort of tracking device, and this software may eliminate the need for wearables all together, particularly for animals raised indoors. Using cameras stationed throughout the barn, the software alerts farmers when their cows show early signs of lameness. Cargill has a significant minority investment in Cainthus, capitalizing on the notion that this “machine vision” approach will allow AI to supplant many of the sensor systems. 

Developed by Connecterra, Ida, “The Intelligent Dairy Farmer’s Assistant,” is a cow neck tag that gathers activity data on cows, such as time spent eating, ruminating, idling, walking and lying down. Connecterra says it uses AI to interpret individual deviations in the cow’s behavior and provide alerts or recommendations to the farmer.

Drones

There are opportunities for drones in the dairy industry, but they often require additional technologies. Drones can be used to generally inspect the herd or fences or to aid in herding cows from fields to barns.

The inclusion of other technologies presents greater opportunities. Visual sensors have proven to be instrumental in surveying land and measuring pasture growth. PrecisionHawk is using drones to map, inspect and photograph pastures in order to detect growth. 

Algorithms enable drones to identify cows specifically and avoid confusing them with deer or similar animals. When combined with thermal imaging, the opportunities to locate and track cows increases dramatically, particularly in fields spotted with trees or dense foliage. Temperature detection would allow farmers to identify abnormal behavior in the cow, such as lameness, illness or calving. Drones may become more useful in these areas, particularly if battery life is prolonged and autonomous flying ability is improved.

Robots

Robotic milking machines are probably the most well-known application for robots in the dairy industry, increasing efficiencies and replacing expensive or unavailable labor. Lely’s Astronaut A5 and DeLaval’s Voluntary Milking System not only cut labor costs, they also allow cows to decide when they want to be milked. Robotic milkers (milkbots) clean the udders, identify the cow’s teats and milk automatically.

DeLaval offers other robotic milking technologies, such as the rotary platform, which allows farmers to maximize a herd’s milking performance while providing a comfortable and safe environment for both cows and operators. miRobot provides a milking system also designed for larger operations. Both companies offer multi-stall, automated milking operations to milk cows simultaneously, completing full parlors with only one operator. This new technology has allowed farmers to cut back on labor costs and achieve more milkings per day.

robotic_milker.jpg

Image courtesy of Lely

The Lely Grazeway system acts as a gateway to the pasture that only allows cows to graze after they have been milked. The cows step into the selection box, and the Lely Qwes cow-recognition system determines whether or not the cow can be let out to graze.

Before robots, cows were typically milked twice a day because of labor and time constraints. Now, cows can be milked three times a day or more, greatly increasing production and profits. In addition, while the cows are stationary for several minutes during milking, there is also an opportunity for medical and health assessments using transponders or sensors — which can not only analyze the speed, amount and quality of milk produced but also how much the cow has eaten, its heat cycle and more.

Another possible use for robots includes cleaning and sanitizing the barn, allowing for better biosecurity measures that will lead to healthier conditions for the cows. There might also be a place for robots in the calving process. While this might not be as useful for an outdoor herd, there is the potential for robotic assistance for cows kept indoors.

3D printing

There are multitudinous applications for 3D printing in the dairy industry. A primary application of 3D printing is for machine parts, which may be of particular interest to rural farmers, saving valuable time and even possibly money, depending on the part needed.

3d_printing.jpg

Image courtesy of Perfect Day

In some ways, 3D printing is already challenging the dairy industry, through 3D-printed foods. Cheese is one of the easier foods to duplicate through 3D printing, due to its easily changeable state from solid to liquid. Studies suggest that printed cheese is less sticky, softer and has better meltability than non-printed cheese. The concept of printed food may not appeal to all consumers, though, so the challenge is to produce food that offers an advantage, such as lower cost, improved taste or better nutritional content.

Such is the case with “Perfect Day,” a startup company from San Francisco using 3D printing combined with gene sequencing to create a yeast fermentation product that looks and tastes like milk. The product is portrayed as a non-dairy alternative for vegans or dairy-intolerant individuals. 

Augmented reality

Augmented reality (AR) can be defined as the integration of digital information with the user’s environment in real time. A recent report stated that sales for augmented reality are expected to rise from $2.4 billion in 2018 to $48.2 billion in 2025.

Studies have found that AR can be used to make food more visually appealing or to effectively estimate proper serving sizes. Apple’s ARKit can also be used to provide consumers with nutritional knowledge, as this video demonstrates. Should this technology become more common, these applications could affect the dairy industry, as certain aspects of food products — both good and bad — would be more readily available to the consumer. 

Outside of the consumer focus, augmented reality can be used to allow producers an alternative way to monitor and evaluate cows. This video (skip to the 2:22 mark) demonstrates how AR can allow a farmer to immediately see stats relating to the farm through the use of goggles. Information relating to each individual cow is overlaid through the glasses into the farmer’s field of vision. He can see information on everything in the facility and even evaluate the quality of the milk.

Could this technology not also be used in the veterinary field for inspection and observation? Perhaps if combined with reliable sensor data, the vet could be able to deliver appropriate recommendations for disease management and reduce the need for direct farm call visits, thus lowering costs.

Virtual reality

Virtual reality (VR) is defined as a digital environment that can be interacted with in a seemingly real way through electronic equipment. Applications in the dairy industry vary from farm tours to veterinary training, with positive impacts on safety and efficiency. 

New Zealand dairy cooperative Fonterra and solutions company Beca have partnered to develop a virtual reality health and safety training technology that allows employees to navigate the manufacturing and distribution sites without actually setting foot on the physical site, thus reducing onboarding times. Fonterra employees learn to identify potential hazards and experience hazardous situations in a realistic simulated environment, enhancing learning experiences without the risk of being in harm’s way. This technology also reduces labor costs by replacing a number of hands-on health and safety training positions.

Virtual reality is being used to teach veterinary students about the reproductive and rectal tracts of the cow. Created by former vet Sarah Baillie, the Haptic Cow is a fiberglass model of the rear of a cow that combines virtual reality with robotics. The VR aspect is provided by a computer that allows students to visualize an object within the cow — virtually enabling them to practice fertility examinations, such as pregnancy detection, or determine reproductive concerns without putting them in a situation that could be dangerous for both the cow and the student.

DeLaval is creating virtual reality films of farms available in 360 degrees, allowing viewers to scroll from side to side to view the entirety of the dairy barn. The Hamra Farm in Sweden, for instance, showcases the innovative techniques they implement on their farm, such as robotic milking machines, robotic brushes, robotic cleaners and more, in their VR film. These "farm tours" will allow consumers to better understand where their dairy comes from. There is much discussion about animal welfare, and giving consumers an opportunity to experience firsthand how a dairy farm operates is an important component of influencing perception the industry.

Blockchain

It is well known that consumers are increasingly becoming interested in where their food comes from and how it is produced. Blockchain can connect all aspects of the supply chain from producer to consumer and allow for food traceability and safety. From an agriculture and food perspective, offering this type of information to consumers will become a competitive advantage and may not prove as challenging in dairy as in other areas of agriculture, such as beef, which exchanges ownership more frequently.

Internet of Things

Together these eight technologies are creating opportunities within the dairy industry for increased efficiencies, profitability and production. The connectivity of these technologies is made possible through the Internet of Things (IoT).

Agriwebb is a company using IoT for full farm recordkeeping, including field management, inventory, operations, grazing and even biosecurity. Stellapps in India leverages IoT to offer all manner of products, from general herd management to milk evaluation, payment processing and cold chain monitoring. Dell Technologies is also heavily involved in IoT applications and is working with dairy producer Chitale.

Cargill is working with SCiO (Consumer Physics) to create Reveal, an app designed to deliver content of feed within minutes. Previously, this type of technology was either time-intensive (waiting on lab results) or expensive (specialized equipment cost thousands of dollars). Using a micro spectrometer with NIR calibrations, Cargill and SCiO offer this simple service using producers' own devices, and results are available in a minute's time.

Keenan.jpg

IoT technology is how the KEENAN InTouch system is able to provide farmers with the nutritional information they need to ensure the best formulation possible. KEENAN’s feed mixers are designed to give uniformity to feed, allowing for improved digestion in the ruminant and creating rations that are both chemically and physically balanced. The cloud-based system enables producers to monitor feed waste and make necessary changes to improve efficiencies and decrease costs.

Using the data

In the past, farm management applications have allowed farmers to make strategic management decisions based on the collection of farm data. Inevitably once nutritional decisions are being made, sciences such as nutrigenomics and decisions about smart nutrition are critical to taking advantage of this enhanced data and management information systems. Nutrigenomics research has shown that specific nutrients and inclusion of enzymes can greatly impact milk yield.

Previously, collected data was generalized for an entire dairy farm. Through the use of sensors, AI and other technologies, farm management apps like FarmWizard can provide individual data for each cow, allowing farmers to improve precision and accuracy when making managerial decisions. 

AI.jpg

Dairying in 2067 won’t look anything like the dairy farming of the recent past, let alone the era when the first cow was domesticated. Changes are happening so fast that the connected farm is likely to be the norm within the next 10 years. By implementing the eight technologies described here, along with the interconnectivity of IoT, farmers will be able to capture and have direct access to individual cow data, both current and historical. This will enable farmers to bridge the data gap and improve dairy production through digitization. The winners will be those who embrace this disrupted digital dairy landscape.

 

I want to learn more about implementing new technologies on my dairy farm.

<>Premium Content
Off
<>Featured Image
<>Date
<>Featured Image License
Off
<>Hubspot
<!--[if lte IE 8]>
<script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2-legacy.js"></script>
<![endif]--><script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2.js"></script><script>
hbspt.forms.create({
portalId: '745395',
formId: '2c5ba201-30c0-4669-9dc4-c9711ca1b006'
});
</script>
<>Feature
On
<>Primary Focus Area
<>Animal Nutrition Focus Areas
<>Article Type
<>Regions
<>Image Caption

Emerging digital technologies hold promise for revolutionizing dairy, from management of the herd to management of the individual cow.

The benefits of organic trace minerals in cattle

Submitted by aeadmin on Tue, 08/29/2017 - 00:00

Every producer knows that when a beef cow is healthy, her calf has a much better chance of being healthy, too. Trace mineral nutrition is key for maintaining healthy cattle at all life stages. Colostrum quality, calf weight and immune function are among the many benefits from supplementing organic trace minerals in cattle. A study done in 2017 at the University of Florida and published in The Professional Animal Scientist evaluated the response of 160 Angus (AN) and Brangus (BN) cows and their calves to inorganic (ING) or organic (ORG) trace mineral sources.

About the study

The purpose of the study was to evaluate the difference in performance and benefits provided by feeding organic trace minerals versus inorganic trace minerals to cattle on pasture. Beef cows supplemented with organic trace minerals received cobalt, copper, manganese and zinc in the form of Bioplex® and selenium in the form of Sel-Plex®. Beef cows supplemented with inorganic trace mineral products received them as sulfates and sodium selenite, respectively.

The level of mineral supplementation also varied between treatment groups:

  • In the pelleted feed, the organic trace mineral treatment included 25% less copper, 13% less manganese and 29% less zinc compared to the inorganic trace mineral treatment.
  • In the free-choice mineral, the organic trace mineral treatment included 45% less copper, 32% less manganese and 46% less zinc than the inorganic trace mineral treatment.

The best mineral strategy for cattle is one that fits within the producer’s operation, based on their animal requirements and budget and the benefits provided from that mineral product. Organic trace minerals, such as Bioplex and Sel-Plex, are more bioavailable and, as a result, can be added at much lower inclusion rates than the traditional inorganic sources, which not only benefits the environment but, ultimately, the health, well-being, reproductive performance and growth of the animals as well.

Effects of trace mineral source on colostrum

The University of Florida trial revealed that colostrum from lactating cows supplemented with organic trace mineral supplement sources contained 29% more immunoglobulin M (IgM mg/dL) antibodies compared to cows supplemented with inorganic trace minerals (P= 0.07). Cows supplemented with the organic trace mineral sources Bioplex and Sel-Plex also demonstrated significantly higher levels of selenium measured in colostrum —and Angus cows specifically had twice as much selenium compared to their inorganic counterparts (P ≤ 0.001).

"Prenatal immunoglobulin colostrum concentrations in cows at parturition"

The study results also showed that the somatic cell counts (SCC) of the colostrum from Angus cows fed organic trace minerals were 67% lower than the SCC of the colostrum from cows fed inorganic trace minerals. Additionally, Brangus cows fed organic trace minerals had 14.6% lower SCC compared to cows fed inorganic trace minerals.

"Colostrum quality of cows at parturition"

Effects of maternal mineral nutrition on calf weight and antibody levels

As the study progressed, the researchers at the University of Florida observed that calves from cows fed the organic trace mineral sources (Bioplex and Sel-Plex) showed a statistically significant increase in their average daily gains, weaning weights and 205-day adjusted body weights compared to calves fed inorganic trace mineral sources (P ≤ 0.01).

Calves from cows who were supplemented with Bioplex- and Sel-Plex- had 205-day adjusted body weights that were, on average, 22 pounds heavier compared to the weights of calves from cows that were provided with inorganic sources (P ≤ 0.01). Specifically, Angus calves supplemented with Bioplex and Sel-Plex minerals were 33 pounds heavier (205-day adjusted weaning weights) compared to calves from Angus cows supplemented with inorganic trace mineral sources.

"Calf adjusted body weight organic trace minerals"

The researchers also measured immunoglobulin levels and found that the immunoglobulin A (IgA mg/dL) antibody measurements for calves from cows supplemented with organic trace minerals Bioplex and Sel-Plex demonstrated a statistically significant (40.5%) increase in calf serum 24 hours after colostrum consumption compared to calves from cows provided with inorganic trace mineral sources (P = 0.04).

"Calf antibody concentrations after colostrum consumption with organic trace minerals"

Bioplex® offers a range of trace minerals that provide mineral nutrition in a form as close to nature as possible. Bioplex minerals are trace minerals that are bound to amino acids and a range of peptides. They are easily absorbed and readily metabolized, optimizing animal performance. Bioplex trace minerals (including zinc, manganese, copper, iron and cobalt*) are co-factors in the enzymes that are critical for the animal’s defense system, growth and reproduction. Learn more about Bioplex here.

Sel-Plex® is Alltech’s proprietary organic form of selenium yeast. It is an excellent dietary source of selenium and is manufactured to mimic the selenium found in nature. The selenium in Sel-Plex is safer and better able to meet the higher requirements of livestock raised for rapid growth, reproductive performance and health. Learn more about Sel-Plex here.

I want to learn more about nutrition for my beef cattle.

<>Premium Content
Off
<>Featured Image
Beef cattle
<>Date
<>Page Title
Florida study shows organic minerals’ benefit to Angus and Brangus cows
<>Featured Image License
Off
<>Hubspot
<!--[if lte IE 8]>
<script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2-legacy.js"></script>
<![endif]--><script charset="utf-8" type="text/javascript" src="//js.hsforms.net/forms/v2.js"></script><script>
hbspt.forms.create({
portalId: "745395",
formId: "e4b8cd32-e447-42d0-8665-673f8d56b8fe"
});
</script>
<>Feature
Off
<>Primary Focus Area
<>Animal Nutrition Focus Areas
<>Article Type
<>Products
<>Regions
<>Programs and Services
<>Content Author
Subscribe to Fertility
Loading...