Soils are never “one size fits all,” but all healthy soils do have these three essential components in common.

1. **Plentiful nutrient content and availability**
 Healthy soils have a plentiful supply of minerals and other essential nutrients, as well as a balanced pH, making them readily available for uptake by the plant. Depletion is offset by the minerals that return to the soil through fertilisation or decomposition.

2. **Biodiversity and a strong microbiome**
 High-performing soils have a vibrant population of insects, worms and microbes. A strong microbiome is a miniature environment that harbours little to no pathogens and is rich in the beneficial organisms that promote root and plant growth.

3. **Balanced soil profile**
 Balanced, silty soils with high organic content combine good aeration with excellent nutrient and water retention, requiring fewer costly inputs. Highly productive soils often contain as much as 20% water and 20% air.

Key definitions:

Soil health: Healthy soils have a balanced structure with high organic content, good biodiversity and high nutrient availability.

Plant health: True plant health goes beyond “no visible disease symptoms.” Healthy plants have robust nutrient uptake and utilisation and are well-equipped to withstand the effects of disease and environmental stresses.
Reduced impacts of stress
During the season, crop stress events, such as heat, frost, drought and disease, strain plant resources and greatly reduce potential end-of-season harvest yields. Healthy, productive soils can offset the worst of these stresses, helping maintain optimal harvest yields and business profitability.

Increased production with fewer inputs
Well-balanced soils that are rich in organic matter naturally supply much of the nutritional and water requirements that would otherwise need to be supplemented by the grower. Reducing the amount of inputs required means money saved.

Sustainability and profitability
Healthy soils are not only more environmentally sustainable, but they also represent a valuable, revenue-generating asset for growers, their businesses and their families for years to come.

Minerals make up half of the content of balanced, fertile soils, while the remaining half is made up of water, air and organic matter. This environment supports a diverse biome, including worms, insects and microbes. Sustainable practices protect the soil structure and biome from damage and nutrient depletion. Once damaged, it can take many years to rehabilitate soils back to a healthy state.

“We know more about the movement of celestial bodies than about the soil underfoot.”
—Leonardo da Vinci
Key soil microbes

Since microbes are the most populous living component of the soil, evaluating their presence and activity can serve as an excellent proxy for measuring overall soil health.

Bacillus spp., Lactobacillus spp.
Acts as an antagonist against a wide variety of pathogens, including *Fusarium*, *Pythium*, *Rhizoctonia*, *Sclerotinia* and even nematodes.

Trichoderma spp.
Fungus that creates a symbiotic relationship with plant roots. Acts antagonistically toward pathogenic fungi such as *Botrytis* and *Fusarium*.

Pseudomonas spp.
Plays a major role in plant growth promotion, induced resistance and biological control of pathogens, including nematodes.

Rhizobium spp., Bradyrhizobium spp.
Forms symbiotic relationships with roots in legumes, making nitrogen available to the plant. Benefits pass on to crops in rotation with legumes.

Balanced soils and nutrient availability

Nutrient availability is affected by soil pH. A moderate pH allows for optimal availability of most nutrients, which means fewer corrective inputs are required from the producer.

<table>
<thead>
<tr>
<th>pH</th>
<th>Acidic soil</th>
<th>Alkaline soil</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td>Nutrogen</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nitrogen
Improves growth, grain and fruit development and leaf quality

Phosphorus
Promotes blooming and root growth

Potassium
Improves fruit quality, disease resistance and drought tolerance

Sulfur
Essential for chloroplast formation

Calcium
Aids nutrient transport within the plant

Magnesium
Activates growth enzymes, essential for chlorophyll formation

Iron
Essential for chlorophyll formation

Manganese
Essential for photosynthesis and nitrogen metabolism

Boron
Essential for fruit and seed development

Copper
Aids photosynthesis and reproductive development

Zinc
Regulates plant growth and sugar metabolism

The cost of missing microbes

Conventional fertilisers are highly reliable and efficient, but they can unintentionally starve or even kill beneficial soil microbes.

In practical terms, this missing population creates an ever-increasing need for additional fertiliser applications. By comparison, organic fertilisers can feed both plant and soil, leading to reduced input requirements over time.
Best practices for maintaining healthy soils

Unfortunately, it is much easier to damage the health of our soils than to restore it. While it takes many consecutive seasons of sound practices to develop and maintain healthy soils, those benefits can be lost in just a few seasons of poor soil management.

Some best practices for maintaining healthy soils include:

Soil testing

Testing quantifies the current state of your soil, providing a baseline to measure improvement while helping avoid unnecessary treatments. For the clearest picture of a soil’s true health, modern tests include measurements of microbial content and activity.

Increasing organic matter

Organic matter supports soil fertility, improves nutrient- and water-holding capacity, and provides a food source for beneficial microbes. In addition to the other practices listed here, incorporating amino acids into your program can also increase soil carbon and nitrogen.

Minimising disturbances

Excessive disturbance (e.g., plowing, discing, tillage) entails more work for the grower and interrupts the soil’s natural cycles, leading to increased erosion, weeds, soil compaction and loss of organic matter. Consequently, no-till systems are becoming more popular.

Keeping soil covered

Keeping living roots in the soil benefits the microbiome. Cover crops also prevent erosion, suppress weeds, increase soil organic matter and nutrient cycling, and reduce compaction. Some cover crops may be mulched into the soil the following season, adding additional organic matter.

Crop rotation and intercropping

Biodiversity aboveground contributes to biodiversity below-ground. Rotating or intercropping grains and legumes is an increasingly common practice that restores soil fertility, reduces disease recurrence and lowers the need for additional nitrogen.

Using soil inoculants, activators and enzymes

These types of products support healthy microbial populations, either by adding beneficial microbes directly or by providing the enzymes and other compounds that favour an optimised microbiome. Improved activity can be measured by comparing soil enzyme levels.

FURTHER READING:

5. “Living Soil.” Soil Health Institute, 2018. livingsoilfilm.com

“"The nation that destroys its soil destroys itself.””

—Franklin Delano Roosevelt